

Welcome to kmcos’s documentation!

[image: _images/kmcos_structure.png]

Things you can do with kmcos.

kmcos is a vigorous attempt to make (lattice) kMC modelling more accessible.

kmcos is designed for and by kMC model developers. As of this writing there
is no standardized way to develop kMC models, thus there is no standardized
way to use kmcos. kmcos can be an Editor, an API, a viewer. However all in all
kmcos wants to save time filled with repetitive labor and enlarge your stride.

Not sure how to begin? Start with the API tutorial.

	Installation
	Making a Python Virtual Environment for kmcos within Ubuntu

	Installing kmcos on Ubuntu Linux

	Installing kmcos on Fedora Linux (typically inside a virtual environment)

	Installation on openSUSE 12.1 Linux (Deprecated Instructions)

	Installation on openSUSE 13.1 Linux (Deprecated Instructions)

	Installation on Mac OS X 10.10 or above (Deprecated Instructions)

	Installation on windows

	Installing JANAF Thermochemical Tables

	Tutorials
	Introduction
	Feature overview

	The Runtime View

	A first kMC Model–the API way
	Build the model

	Populate process list and parameter list

	Export, save, compile
	Running and viewing the model

	Taking it home

	An alternative way using .ini files

	Running the Model From Runfiles
	Running the Model–the API way

	Generate Grids of Sampled Data

	Manipulating the Model Species at Runtime

	Saving and Reloading the State of the Simulation

	Running models in parallel

	Development
	Running the Model–the GUI way

	How To Prepare a Model and Run It Interactively

	The Model Editor (Deprecated – glade migration is required to revive this feature)

	Topic Guides
	The Concept of Kinetic Monte Carlo
	Why use Kinetic Monte Carlo?

	Basic Kinetic Carlo Algorithm

	Justification of the Algorithm

	Further Reading

	Modelling Workflows
	kMC Modeling

	kmcos workflows

	The kmcos data model

	How the kmcos kMC algorithm works
	The kmcos O(1) solver

	Temporal acceleration

	The otf Backend
	Reference

	Example

	Advanced OTF rate expressions

	Running otf-kmcos models

	Known Issues

	The Process Syntax
	Adsorption

	Diffusion

	Avoid Double Counting

	Taking It Home

	The Site/Coordinate Syntax
	Manual generation

	Advanced Coordinate Techniques

	Taking it home

	Developer’s guide
	Introduction and disclaimer

	How to edit, install, and test your changes locally

	Some nomenclature

	The three backends
	local_smart

	lat_int

	otf

	The structure of the FORTRAN code.
	Files for the local_smart backend
	base.f90

	lattice.f90

	proclist.f90

	Files for the lat_int backend
	proclist.f90

	proclist_constants.f90

	nli_<lat_int_nr>.f90

	run_proc_<lat_int_nr>.f90

	Files for the otf backend
	proclist.f90

	proclist_constants.f90

	proclist_pars.f90

	run_proc_<proc_nr>.f90

	Key data-structures
	Important scalar variables

	Important arrays
	rates

	lattice

	nr_of_sites

	accum_rates

	avail_sites

	procstat

	Additional arrays for the otf backend
	accum_rates_proc

	rates_matrix

	One kmc step in kmcos
	The put and take routines

	Updating avail_sites

	A kmc step with the lat_int backend

	A kmc step with the otf backend

	The code generation routines
	The source file template

	The write_proclist method
	Methods called to build local_smart source code
	write_proclist_generic_part

	write_proclist_constants

	write_proclist_generic_subroutines

	write_proclist_run_proc_nr_smart

	write_proclist_put_take

	write_proclist_touchup

	TODO write_proclist_multilattice

	write_proclist_end

	Methods called to build lat_int source code
	write_proclist_lat_int

	write_proclist_lat_int_run_proc_nr

	write_proclist_lat_int_touchup

	write_proclist_lat_int_run_proc

	write_proclist_lat_int_nli_casetree

	Methods called to build otf source code
	write_proclist_pars_otf

	write_proclist_touchup_otf

	write_proclist_run_proc_nr_otf

	write_proclist_run_proc_name_otf

	Reference
	Model running commands
	Typical usage: model.[command]

	Connected Variables

	Data Types
	kmcos.types

	kmcos.io

	Editor frontend
	kmcos.gui

	kmcos.forms

	Runtime frontend
	kmcos.run

	kmcos.view

	kmcos.cli

	kmcos.utils

	kmcos kMC project DTD

	Backends
	local_smart
	kmcos/base
	base/accum_rates

	base/add_proc

	base/allocate_system

	base/assertion_fail

	base/avail_sites

	base/can_do

	base/deallocate_system

	base/del_proc

	base/determine_procsite

	base/get_accum_rate

	base/get_avail_site

	base/get_integ_rate

	base/get_kmc_step

	base/get_kmc_time

	base/get_kmc_time_step

	base/get_kmc_volume

	base/get_nrofsites

	base/get_procstat

	base/get_rate

	base/get_species

	base/get_system_name

	base/get_walltime

	base/increment_procstat

	base/integ_rates

	base/interval_search_real

	base/kmc_step

	base/kmc_time

	base/kmc_time_step

	base/lattice

	base/nr_of_proc

	base/nr_of_sites

	base/procstat

	base/rates

	base/reload_system

	base/replace_species

	base/reset_site

	base/save_system

	base/set_kmc_step

	base/set_kmc_time

	base/set_rate_const

	base/set_system_name

	base/start_time

	base/system_name

	base/update_accum_rate

	base/update_clocks

	base/update_integ_rate

	base/volume

	base/walltime

	kmcos/lattice
	lattice/allocate_system

	lattice/calculate_lattice2nr

	lattice/calculate_nr2lattice

	lattice/deallocate_system

	lattice/default_layer

	lattice/lattice2nr

	lattice/model_dimension

	lattice/nr2lattice

	lattice/nr_of_layers

	lattice/site_positions

	lattice/spuck

	lattice/system_size

	lattice/unit_cell_size

	kmcos/proclist
	proclist/do_kmc_step

	proclist/do_kmc_steps

	proclist/do_kmc_steps_time

	proclist/get_next_kmc_step

	proclist/get_occupation

	proclist/get_seed

	proclist/init

	proclist/initialize_state

	proclist/put_seed

	proclist/run_proc_nr

	proclist/seed_gen

	kmcos/kind_values

	lat_int
	kmcos/base
	base/accum_rates

	base/add_proc

	base/allocate_system

	base/assertion_fail

	base/avail_sites

	base/can_do

	base/deallocate_system

	base/del_proc

	base/determine_procsite

	base/get_accum_rate

	base/get_avail_site

	base/get_integ_rate

	base/get_kmc_step

	base/get_kmc_time

	base/get_kmc_time_step

	base/get_kmc_volume

	base/get_nrofsites

	base/get_procstat

	base/get_rate

	base/get_species

	base/get_system_name

	base/get_walltime

	base/increment_procstat

	base/integ_rates

	base/interval_search_real

	base/kmc_step

	base/kmc_time

	base/kmc_time_step

	base/lattice

	base/nr_of_proc

	base/nr_of_sites

	base/procstat

	base/rates

	base/reload_system

	base/replace_species

	base/reset_site

	base/save_system

	base/set_kmc_time

	base/set_rate_const

	base/set_system_name

	base/start_time

	base/system_name

	base/update_accum_rate

	base/update_clocks

	base/update_integ_rate

	base/volume

	base/walltime

	kmcos/lattice
	lattice/allocate_system

	lattice/calculate_lattice2nr

	lattice/calculate_nr2lattice

	lattice/deallocate_system

	lattice/default_layer

	lattice/lattice2nr

	lattice/model_dimension

	lattice/nr2lattice

	lattice/nr_of_layers

	lattice/site_positions

	lattice/spuck

	lattice/system_size

	lattice/unit_cell_size

	kmcos/proclist

	proclist/do_kmc_step
	proclist/do_kmc_steps

	proclist/do_kmc_steps_time

	proclist/get_next_kmc_step

	proclist/get_occupation

	proclist/get_seed

	proclist/init

	proclist/initialize_state

	proclist/put_seed

	proclist/seed_gen

	kmcos/kind_values

	otf
	kmcos/base
	base/accum_rates

	base/accum_rates_proc

	base/add_proc

	base/allocate_system

	base/assertion_fail

	base/avail_sites

	base/can_do

	base/deallocate_system

	base/del_proc

	base/determine_procsite

	base/get_accum_rate

	base/get_avail_site

	base/get_integ_rate

	base/get_kmc_step

	base/get_kmc_time

	base/get_kmc_time_step

	base/get_kmc_volume

	base/get_nrofsites

	base/get_procstat

	base/get_rate

	base/get_species

	base/get_system_name

	base/get_walltime

	base/increment_procstat

	base/integ_rates

	base/interval_search_real

	base/kmc_step

	base/kmc_time

	base/kmc_time_step

	base/lattice

	base/nr_of_proc

	base/nr_of_sites

	base/procstat

	base/rates

	base/rates

	base/reaccumulate_rates_matrix

	base/reload_system

	base/replace_species

	base/reset_site

	base/save_system

	base/set_kmc_time

	base/set_rate_const

	base/set_system_name

	base/start_time

	base/system_name

	base/update_accum_rate

	base/update_clocks

	base/update_integ_rate

	base/update_rates_matrix

	base/volume

	base/walltime

	kmcos/lattice
	lattice/allocate_system

	lattice/calculate_lattice2nr

	lattice/calculate_nr2lattice

	lattice/deallocate_system

	lattice/default_layer

	lattice/lattice2nr

	lattice/model_dimension

	lattice/nr2lattice

	lattice/nr_of_layers

	lattice/site_positions

	lattice/spuck

	lattice/system_size

	lattice/unit_cell_size

	kmcos/proclist

	proclist/do_kmc_step
	proclist/do_kmc_steps

	proclist/do_kmc_steps_time

	proclist/get_next_kmc_step

	proclist/get_occupation

	proclist/get_seed

	proclist/init

	proclist/initialize_state

	proclist/put_seed

	proclist/run_proc_nr

	proclist/seed_gen

	kmcos/kind_values

	Command Line Interface (CLI)
	List of commands

	Trouble Shooting

	Frequently Asked Questions

This document was generated Apr 12, 2023.

Installation

Kmcos has some non-python dependencies so cannot be installed with only pip. It is recommended to install kmcos on Ubuntu within a python virtual environment, and our instructions are written accordingly.
If you plan to use a windows machine, it is recommended to first get VirtualBox [https://www.virtualbox.org/wiki/Downloads]
and to make an Ubuntu virtualmachine [https://www.freecodecamp.org/news/how-to-install-ubuntu-with-oracle-virtualbox/] .

Making a Python Virtual Environment for kmcos within Ubuntu

Using a virtual python environment for both installation and for simulations avoids python software conflicts. Here are instructions for installing a python virtual environment.

OPTION 1 (python3-venv):

cd ~
sudo apt-get update
sudo apt-get install python3
sudo apt-get install python3-venv
python3 -m pip install --upgrade pip
python3 -m venv ~/VENV/kmcos
source ~/VENV/kmcos/bin/activate

To use kmcos after this installation, you will need to use that source activation command from the terminal each time. When finished, you can exit this virtualenv by typing ‘deactivate’.

OPTION 2 (virtualenv):

cd ~
sudo apt-get update
sudo apt-get install python3
sudo apt-get install virtualenv
python3 -m pip install --upgrade pip
virtualenv -p /usr/bin/python3 ~/VENV/kmcos #If this fails, try typing "which python3" and replace the path "/usr/bin/python3" with what your system provides.
source ~/VENV/kmcos/bin/activate

To use kmcos after this installation, you will need to use that source activation command from the terminal each time. When finished, you can exit this virtualenv by typing ‘deactivate’. Though you should not need it, you can find more information on virtualenv at this video [https://www.youtube.com/watch?v=N5vscPTWKOk] and the official website [https://virtualenv.pypa.io/en/latest/]

OPTION 3 (anaconda):
If you will be installing kmcos in an anaconda environment, you can make a new environment named ‘kmcos’ from anaconda navigator. See for example this link [https://medium.com/cluj-school-of-ai/python-environments-management-in-anaconda-navigator-ad2f0741eba7] .

Virtual environment installations do not require the “–user” tag as the python packages are ‘sandboxed’ during installation. Accordingly, the “–user” tags are commented out in our further instructions.

Installing kmcos on Ubuntu Linux

If you are a typical user, first make sure you are in your virtual environment (after preparation by the above instructions):

source ~/VENV/kmcos/bin/activate

The easiest way to install kmcos is to use one of the automatic installers:

cd ~
sudo apt-get install git
git clone https://github.com/kmcos/kmcos-installers
cd kmcos-installers
python3 -m pip install --upgrade pip
bash install-kmcos-linux-venv.bash #use 'bash install-kmcos-linux-user.bash' if you are not using a venv. #For the develop branch, use install-kmcos-linux-venv-develop.bash or install-kmcos-linux-user-develop.bash

For personal computer usage (not on a supercomputer), it is a good idea to also run the following command, which will add the kmcos viewer and movie maker:

bash install-kmcos-complete-linux-venv-Ubuntu20.bash #this is for Ubuntu20. There is also an Ubuntu18 version.

If everything has gone well, you have a minimal installation completed! And now you are done and can leave this installation page!

If the above simple way does not work for you, you will need to go through the commands manually one at a time from installation on a venv [https://github.com/kmcos/kmcos-installers/blob/main/install-kmcos-linux-venv.bash] or installation as a user [https://github.com/kmcos/kmcos-installers/blob/main/install-kmcos-linux-user.bash] . A kmcosInstallation directory is created during installation. The files in the kmcosInstallation are no longer needed after installation, but it has exampples in it. So you can you can navigate into that directory and go through the examples, or you can remove the kmcosInstallation directory using ‘rm -r directoryname’.

When doing kmcos upgrades, you will not need to use git again. For kmcos upgrades, you can just use the earlier pip command:

pip3 install kmcos[MINIMAL] --upgrade #--user

(Optional) If you would like to use the kmcos view capability, you will need to install some non-python dependencies and then kmcos complete:

sudo apt-get install python-ase
sudo apt-get install python3-gi
pip3 install ase #--user
pip3 install kmcos[COMPLETE] --upgrade #--user

If the last command of ‘pip3 install kmcos[COMPLETE] –upgrade #–user’ gives an error before finishing, try the command a second time.

Installing kmcos on Fedora Linux (typically inside a virtual environment)

Install developement tools gcc and fortran.

For fedora 32+

sudo dnf groupinstall "Development Tools" "Development Libraries"
sudo dnf install gcc-gfortran

For fedora below 32

sudo dnf groupinstall @development-tools @development-libraries
sudo dnf install gcc-gfortran

Make a virtual environment for the kmcos and activate it:

python3 -m venv ~/VENV/kmcos
source ~/VENV/kmcos/bin/activate

Clone the kmcos github repository in a folder you want and change to the kmcos directory:

git clone https://github.com/kmcos/kmcos.git
cd kmcos

Install the python package requirements and finally the kmcos package:

pip3 install numpy lxml ase matplotlib UnitTesterSG CiteSoft IPython
python3 setup.py install

Installation on openSUSE 12.1 Linux (Deprecated Instructions)

On a recent openSUSE some dependencies are distributed a little
different but nevertheless doable. We start by install some
package from the repositories:

sudo zypper install libgfortran46, python-lxml, python-matplotlib, \
 python-numpy, python-numpy-devel, python-goocanvas,
 python-imaging

And two more packages SUSE packages have to be fetched from the
openSUSE build service [https://build.opensuse.org/]

	gazpacho [https://build.opensuse.org/package/files?package=gazpacho&project=home%3Ajoshkress]

	python-kiwi [https://build.opensuse.org/package/files?package=python-kiwi&project=home%3Ajoshkress]

For each one just download the *.tar.bz2 files. Unpack them and inside
run:

python setup.py install

In the same vein you can install ASE. Download a recent version
from the GitLab website [https://gitlab.com/ase/ase/repository/archive.zip?ref=master]
unzip it and install it with:

python setup.py install

Installation on openSUSE 13.1 Linux (Deprecated Instructions)

In order to use the editor GUI you will want to install python-kiwi (not KIWI)
and right now you can find a recent build here [https://build.opensuse.org/package/show/home:leopinheiro/python-kiwi] .

Installation on Mac OS X 10.10 or above (Deprecated Instructions)

There is more than one way to get required dependencies. MacPorts was previously tested and worked.

As of 2022, the MacPorts way does not seem to be working and the virtual machine way is recommended.

The Virtual Machine Way:

Needed to use Ubuntu 20.04 (Using Ubuntu 22 did not work).

Guest additions was not working on the mac. So needed to do below in addition to the instructions in the intro2kmcos doc.

	Needed to find Virtual Box with finder, right click on the Virtual Box application, show files / show contents, needed to find the VirtualBox.iso file, copy it out to a regular MacOS directory.

	Perl was not working, so needed to do the following:

sudo apt-get update
sudo apt-get install build-essential gcc make perl dkms

That worked, then rebooted Ubuntu.

	Navigated to the virtual disc of the guest additions CD (virtual compact disc):

bash autorun.sh

Then was able to use the virtual machine as well as install kmcos normally.

The MacPorts Way:

	
	Get MacPorts

	Search for MacPorts online, you’ll need to install Xcode in the process

	Install Python, lxml, numpy, ipython, ASE, gcc48. I assume you are using Python 2.7.
kmcos has not been thoroughly tested with Python 3.X, yet, but should not be too hard.

Having MacPorts this can be as simple as:

sudo port install -v py27-ipython
sudo port select --set ipython py27-ipython

sudo port install gcc48
sudo port select --set gcc mp-gcc48 # need to that f2py finds a compiler

sudo port install py27-readline
sudo port install py27-goocanvas
sudo port install py27-lxml
sudo port install kiwi
possibly more ...

if you install these package manually, skip pip :-)
sudo port install py27-pip
sudo port select --set pip pip27

pip install python-ase --user
pip install python-kmcos --user

Installation on windows

Direct installation on windows is currently not supported, but it is possible to use either “WSL” or to use Ubuntu on a virtualbox. It is recommended to download virtualbox, to install Ubuntu, and then follow the Ubuntu installation instructions in the intro2kmcos pdf file here: https://github.com/kmcos/intro2kmcos. You may need to adjust the resolution to work effectively.

If you prefer to use WSL rather than Virtualbox, you will need to install WSL Ubuntu. Press the “start menu” button. Type “Windows Powershell” but don’t press enter: Use run as administrator. Then enter:

wsl --install -d Ubuntu

Now, you can close the Powershell window. Within ubuntu, use:

sudo apt update
sudo apt install x11-apps

From the terminal, type:

xeyes &

With windows 11 and higher, you may see a GUI pop up. If you do not, then you probably will not be able to use a GUI with WSL, and the kmcos export_movie feature also will not work.

For future reference: “cd ~” will take you to the home (default) place for working in WSL Ubuntu, while “cd /” will take you to the root directory of WSL Ubuntu.

For sharing files, “cd /mnt/c” will let you access files on to go to the windows C drive.
By going to mnt/c, you can move files back and forth between Ubuntu directories and the Windows directories.

Now that you have WSL working with Ubuntu, follow the regular instructions from the top of this Installation page. Going forward, you can start WSL Ubuntu by finding Ubuntu in the windows start menu.

Installing JANAF Thermochemical Tables

You can conveniently use gas phase chemical potentials
inserted in rate constant expressions using
JANAF Thermochemical Tables. A couple of molecules
are automatically supported.

Fortunately manual installation is easy.
Just create a directory called janaf_data
anywhere on your python path. To see the directories on your python
path run:

python -c"import sys; print(sys.path)"

Inside the janaf_data directory has to be a file
named __init__.py, so that python recognizes it as a module:

touch __init__.py

Then copy all needed data files from the
NIST website [https://janaf.nist.gov/]
in the tab-delimited text format
to the janaf_data directory. To download the ASCII file,
search for your molecule. In the results page click on ‘view’
under ‘JANAF Table’ and click on ‘Download table in tab-delimited text format.’
at the bottom of that page.

Todo

test installation on other platforms

Tutorials

Introduction

kmcos is designed for lattice based Kinetic Monte Carlo simulations to understand chemical kinetics and mechanisms. It has been used to produce more than 10 scientific publications. The best way to learn how to use kmcos is by following the examples.

If you have already followed the kmcos installation instructions and still have the kmcosInstallation directory, then navigate to /kmcosInstallation/kmcos/examples

If you do not have that directory, but have kmcos installed, go to https://github.com/kmcos/kmcos Click on the green button and download zip, to get the examples.

Inside /examples/, run the following commands

python3 MyFirstSnapshots__build.py
cd MyFirstSnapshots_local_smart
python3 runfile.py

The first command uses a python file to create a chemical model (process definitions) and a KMC modeling executable as well.
The “local_smart” is the default backend (default “KMC Engine”, kmcos has several).

After the simulation has run, you will see a csv file named runfile_TOFs_and_Coverages.csv, open this file to see your first KMC output!

Various examples exist. More features and a thorough tutorial are forthcoming. Please join the kmcos-users group https://groups.google.com/g/kmcos-users and email any questions if you get stuck.

Feature overview

This paragraph is from __init__.py

With kmcos you can:

	easily create and modify kMC models through GUI

	store and exchange kMC models through XML

	generate fast, platform independent, self-contained code 1

	run kMC models through GUI or python bindings

kmcos has been developed in the context of first-principles based modelling
of surface chemical reactions but might be of help for other types of
kMC models as well.

kmcos’ goal is to significantly reduce the time you need
to implement and run a lattice kmc simulation. However it can not help
you plan the model.

Typical users will run kmcos entirely from python code by following the examples.

Footnotes

	1

	The source code is generated in Fortran90, written in a modular
fashion. Python bindings are generated using f2py [http://cens.ioc.ee/projects/f2py2e/].

The Runtime View

[image: ../_images/screenshot_view_ruo2.png]

The compiled module can be run and watched in realtime.
When parameters are changed this is immediately reflected
in the rate constants.

A first kMC Model–the API way

In general there are two interfaces to defining a new
model: A GUI and an API. While the GUI can be quite
nice especially for beginners, it turns out that the
API is better maintained simply because … well, maintaing
a GUI is a lot more work.

So we will start by learning how to setup the model using the
API which will turn out not to be hard at all. It is knowing howto
do this will also pay-off especially if you starting tinkering
with your existing models and make little changes here and there.

Build the model

You may also look at MyFirstDiffusion__build.py in the examples directory.

We start by making the necessary import statements (in *python* [http://python.org] or better *ipython* [http://ipython.org]):

import kmcos
from kmcos.types import *
from kmcos.io import *
import numpy as np

which imports all classes that make up a kMC project. The functions
from kmcos.io will only be needed at the end to save the project
or to export compilable code.

The example sketched out here leads you to a kMC model for CO adsorption
and desorption on Pd(100). First you should instantiate a new project
and fill in meta information

kmc_model = kmcos.create_kmc_model()
kmc_model.set_meta(author = 'Your Name',
 email = 'your.name@server.com',
 model_name = 'MyFirstModel',
 model_dimension = 2,)

Next you add some species or states. Note that whichever
species you add first is the default species with which all sites in the
system will be initialized. Of course this can be changed later

For surface science simulations it is useful to define an
empty state, so we add

kmc_model.add_species(name='empty')

and some surface species. Given you want to simulate CO adsorption and
desorption on a single crystal surface you would say

kmc_model.add_species(name='CO',
 representation="Atoms('CO',[[0,0,0],[0,0,1.2]])")

where the string passed as representation is a string representing
a CO molecule which can be evaluated in ASE namespace [https://gitlab.com/ase/ase/repository/archive.zip?ref=master].

Once you have all species declared is a good time to think about the geometry.
To keep it simple we will stick with a simple-cubic lattice in 2D which
could for example represent the (100) surface of a fcc crystal with only
one adsorption site per unit cell. You start by giving your layer a name

layer = kmc_model.add_layer(name='simple_cubic')

and adding a site

layer.sites.append(Site(name='hollow', pos='0.5 0.5 0.5',
 default_species='empty'))

Where pos is given in fractional coordinates, so this site
will be in the center of the unit cell.

Simple, huh? Now you wonder where all the rest of the geometry went?
For a simple reason: the geometric location of a site is
meaningless from a kMC point of view. In order to solve the master
equation none of the numerical coordinates
of any lattice sites matter since the master equation is only
defined in terms of states and transition between these. However
to allow a graphical representation of the simulation one can add geometry
as you have already done for the site. You set the size of the unit cell
via

kmc_model.lattice.cell = np.diag([3.5, 3.5, 10])

which are prototypical dimensions for a single-crystal surface in
Angstrom.

Ok, let us see what we managed so far: you have a lattice with a
site that can be either empty or occupied with CO.

Populate process list and parameter list

The remaining work is to populate the process list and the
parameter list. The parameter list defines the parameters
that can be used in the expressions of the rate constants.
In principle one could do without the parameter
list and simply hard code all parameters in the process list,
however one looses some nifty functionality like easily
changing parameters on-the-fly or even interactively.

A second benefit is that you achieve a clear separation
of the kinetic model from the barrier input,
which usually has a different origin.

In practice filling the parameter list and the process
list is often an iterative process, however since
we have a fairly short list, we can try to set all parameters
at once.

First of all you want to define the external parameters to
which our model is coupled. Here we use the temperature
and the CO partial pressure:

kmc_model.add_parameter(name='T', value=600., adjustable=True, min=400, max=800)
kmc_model.add_parameter(name='p_CO', value=1., adjustable=True, min=1e-10, max=1.e2)

You can also set a default value and a minimum and maximum value
set defines how the scrollbars a behave later in the runtime GUI.

To describe the adsorption rate constant you will need the area
of the unit cell:

kmc_model.add_parameter(name='A', value='(3.5*angstrom)**2')

Last but not least you need a binding energy of the particle on
the surface. Since without further ado we have no value for the
gas phase chemical potential, we’ll just call it deltaG and keep
it adjustable

kmc_model.add_parameter(name='deltaG', value='-0.5', adjustable=True,
 min=-1.3, max=0.3)

To define processes we first need a coordinate 3

coord = kmc_model.lattice.generate_coord('hollow.(0,0,0).simple_cubic')

Then you need to have at least two processes. A process or elementary step in kMC
means that a certain local configuration must be given so that something
can happen at a certain rate constant. In the framework here this is
phrased in terms of ‘conditions’ and ‘actions’. 2
So for example an adsorption requires at least one site to be empty
(condition). Then this site can be occupied by CO (action) with a
rate constant. Written down in code this looks as follows

kmc_model.add_process(name='CO_adsorption',
 conditions=[Condition(coord=coord, species='empty')],
 actions=[Action(coord=coord, species='CO')],
 rate_constant='p_CO*bar*A/sqrt(2*pi*umass*m_CO/beta)')

Note

In order to ensure correct functioning of the kmcos kMC solver every action should have a corresponding condition for the same coordinate.

Now you might wonder, how come we can simply use m_CO and beta and such.
Well, that is because the evaluator will to some trickery to resolve such
terms. So beta will be first be translated into 1/(kboltzmann*T) and as
long as you have set a parameter T before, this will go through. Same
is true for m_CO, here the atomic masses are looked up and added. Note
that we need conversion factors of bar and umass.

Then the desorption process is almost the same, except the reverse:

kmc_model.add_process(name='CO_desorption',
 conditions=[Condition(coord=coord, species='CO')],
 actions=[Action(coord=coord, species='empty')],
 rate_constant='p_CO*bar*A/sqrt(2*pi*umass*m_CO/beta)*exp(beta*deltaG*eV)')

To reduce typing, kmcos also knows a shorthand notation for processes.
In order to produce the same process you could also type

kmc_model.parse_process('CO_desorption; CO@hollow->empty@hollow ; p_CO*bar*A/sqrt(2*pi*umass*m_CO/beta)*exp(beta*deltaG*eV)')

and since any non-existing on either the left or the right side
of the -> symbol is replaced by a corresponding term with
the default_species (in this case empty) you could as
well type

kmc_model.parse_process('CO_desorption; CO@hollow->; p_CO*bar*A/sqrt(2*pi*umass*m_CO/beta)*exp(beta*deltaG*eV)')

and to make it even shorter you can parse and add the process on one line

kmc_model.parse_and_add_process('CO_desorption; CO@hollow->; p_CO*bar*A/sqrt(2*pi*umass*m_CO/beta)*exp(beta*deltaG*eV)')

In order to add processes on more than one site possible spanning across unit
cells, there is a shorthand as well. The full-fledged syntax for each
coordinate is

"<site-name>.<offset>.<lattice>"

check Manual generation for details.

Export, save, compile

Before we compile the model, we should specify and understand the various backends that are involved.

local_smart backend (default) for models with <100 processes.
lat_int backend for models with >100 processes. (build the model same ways local_smart but different backend for compile step)
otf backend requires custom model (build requires different process definitions compared to local_smart) and can work for models which require >10000 processes, since each process rate is calculated on the fly instead of being held in memory.

Here is how we specify the model’s backend

kmc_model.backend = 'local_smart'
kmc_model.backend = 'lat_int'
kmc_model.backend = 'otf'

Next, it’s a good idea to save and compile your work

kmc_model.save_model()
kmcos.compile(kmc_model)

This creates an XML file with the full definition of your model and exports the model to compiled code.

Now is the time to leave the python shell. In the current
directory you should see a myfirst_kmc.xml.
You will also see a directory ending with _local_smart,
this directory includes your compiled model.

You can also skip the model exporting (and do it later) by commenting out kmcos.compile(kmc_model):
then you can use a separate python file later.
For some installations, you can use kmcos export myfirst_kmc.xml from the linux terminal
when you are in the same directory as the XML.

During troubleshooting, exporting separately can sometimes be useful to make sure
the compiling occurs gracefully without any line
containining an error.

Running and viewing the model

If you now cd to that folder myfirst_kmc_local_smart and run

python3 kmc_settings.py benchmark

You should see that the model was able to run!
Next, let’s try seeing how it looks visually with

python3 kmc_settings.py view

The “view” command only works on certain operating systems.
For some installations, one can alternativeley type kmcos benchmark and kmcos view.

For running the model, it is recommended to use a runfile.

If you wonder why the CO molecules are basically just dangling
there in mid-air that is because you have no background setup, yet.
Choose a transition metal of your choice and add it to the
lattice setup for extra credit :-).

Wondering where to go from here? If the work-flow makes
complete sense, you have a specific model in mind,
and just need some more idioms to implement it
I suggest you take a look at the examples folder [https://github.com/mhoffman/kmcos/tree/master/examples].
for some hints. To learn more about the kmcos approach
and methods you should into topic guides.

In technical terms, kmcos is run an API via the kmcos python module.

Additionally, though now discouraged, kmcos can be invoked directly from the command line in one of the following
ways:

kmcos [help] (all|benchmark|build|edit|export|help|import|rebuild|run|settings-export|shell|version|view|xml) [options]

Taking it home

Despite its simplicity you have now seen all elements needed
to implement a kMC model and hopefully gotten a first feeling for
the workflow.

	2

	You will have to describe all processes
in terms of conditions and
actions and you find a more complete
description in the
topic guide
to the process description syntax.

	3

	The description of coordinates follows
the simple syntax of the coordinate
syntax and the
topic guide
explains how that works.

An alternative way using .ini files

Presently, a full description of the .ini capability is not being provided because this way is not the standard way of using kmcos. However, it is available. This method is an alternative to making an xml file, and can be used instead of kmcos export.

Prepare a minimal input file with the following content and save it as mini_101.ini

[Meta]
author = Your Name
email = you@server.com
model_dimension = 2
model_name = fcc_100

[Species empty]
color = #FFFFFF

[Species CO]
representation = Atoms("CO", [[0, 0, 0], [0, 0, 1.17]])
color = #FF0000

[Lattice]
cell_size = 3.5 3.5 10.0

[Layer simple_cubic]
site hollow = (0.5, 0.5, 0.5)
color = #FFFFFF

[Parameter k_CO_ads]
value = 100
adjustable = True
min = 1
max = 1e13
scale = log

[Parameter k_CO_des]
value = 100
adjustable = True
min = 1
max = 1e13
scale = log

[Process CO_ads]
rate_constant = k_CO_ads
conditions = empty@hollow
actions = CO@hollow
tof_count = {'adsorption':1}

[Process CO_des]
rate_constant = k_CO_des
conditions = CO@hollow
actions = empty@hollow
tof_count = {'desorption':1}

In the same directory run kmcos export mini_101.ini. You should now have a folder mini_101_local_smart
in the same directory. cd into it and run kmcos benchmark. If everything went well you should see something
like

Using the [local_smart] backend.
1000000 steps took 1.51 seconds
Or 6.62e+05 steps/s

In the same directory try running kmcos view to watch the model run or fire up kmcos shell
to interact with the model interactively. Explore more commands with kmcos help and please
refer to the documentation how to build complex model and evaluate them systematically. To test all bells and whistles try kmcos edit mini_101.ini and inspect the model visually.

Todo

describe modelling more complicated structures
and e.g. boundary conditions

Running the Model From Runfiles

Running the Model–the API way

Normally, one uses python runfiles.
However, it is convenient to initially run commands interactively for learning purposes.
The simplest thing to do is to start the model
from within a compiled model directory
using “python3 kmc_settings.py run”

That will start a python shell, allowing one to skip the below commands

#!/usr/bin/env python
from kmcos.run import KMC_Model
model = KMC_Model()

and just interact directly with model. It is often a good idea to use

%logstart some_scriptname.py

as your first command in the IPython command to save what you have typed for later use.

When using a runfile, the starting banner can be turned off by using:

model = KMC_Model(print_rates=False, banner=False)

Now that you have got a model, you try to do some KMC steps

model.do_steps(100000)

which would run 100,000 kMC steps.

Let’s say you want to change the temperature and a partial pressure of
the model you could type

model.parameters.T = 550
model.parameters.p_COgas = 0.5

and all rate constants are instantly updated. In order get a quick
overview of the current settings you can issue e.g.

print(model.parameters)
print(model.rate_constants)

or just

print(model)

Now an instantiated und configured model has mainly two functions: run
kMC steps and report its current configuration.

To analyze the current state you may use

atoms = model.get_atoms()

Note

If you want to fetch data from the current state without
actually visualizing the geometry can speed up the get_atoms()
call using

atoms = model.get_atoms(geometry=False)

This will return an ASE atoms object of the current system, but
it also contains some additional data piggy-backed such as

model.get_occupation_header()
atoms.occupation

model.get_tof_header()
atoms.tof_data

atoms.kmc_time
atoms.kmc_step

If one wants to know what the next kmc step will be
and at which site, without executing the step, one can use

model.get_next_kmc_step()

These quantities are often sufficient when running and simulating
a catalyst surface, but of course the model could be expanded
to more observables. The Fortran modules base, lattice,
and proclist are atttributes of the model instance so,
please feel free to explore the model instance e.g. using
ipython and

model.base.<TAB>
model.lattice.<TAB>
model.proclist.<TAB>

etc..

The occupation is a 2-dimensional array which contains
the occupation for each surface site divided by
the number of unit cell. The first slot
denotes the species and the second slot denotes the
surface site, i.e.

occupation = model.get_atoms().occupation
occupation[species, site-1]

So given there is a hydrogen species
in the model, the occupation of hydrogen across all site
type can be accessed like

hydrogen_occupation = occupation[model.proclist.hydrogen]

To access the coverage of one surface site, we have to
remember to subtract 1, when using the the builtin constants,
like so

hollow_occupation = occupation[:, model.lattice.hollow-1]

Lastly it is important to call

model.deallocate()

once the simulation if finished as this frees the memory
allocated by the Fortan modules. This is particularly
necessary if you want to run more than one simulation
in one script.

Generate Grids of Sampled Data

For some kMC applications you simply require a large number of data points
across a set of external parameters (phase diagrams, microkinetic models).
For this case there is a convenient class ModelRunner to work with

from kmcos.run import ModelRunner, PressureParameter, TemperatureParameter

class ScanKinetics(ModelRunner):
 p_O2gas = PressureParameter(1)
 T = TemperatureParameter(600)
 p_COgas = PressureParameter(min=1, max=10, steps=40)

ScanKinetics().run(init_steps=1e8, sample_steps=1e8, cores=4)

This script generates data points over the specified range(s). The
temperature parameters is uniform grids over 1/T and the
pressure parameters is uniform over log(p). The
script can be run synchronously over many cores as long
as the cores can access the same file system. You have to test whether
the steps before sampling (init_steps) as well as the batch size
(sample_steps) is sufficient.

Manipulating the Model Species at Runtime

To change species on the lattice at the start of simulation
or at any other time in the simulation, one can change
either the whole configuration, or only species on a specific site.

To change species on a specific site, one uses the put command.
There are several syntaxes to use the put command

model.put(site=[x,y,z,n], model.proclist.<species>)
Where 'n' and <species> are the site type and species, respectively. For example:
model.put([0,0,0,model.lattice.ruo2_bridge], model.proclist.co)
model.put([0,0,0,"ruo2_bridge"], "model.proclist.co")
model.put([0,0,0,2], 1) #The 'n' is has indexing starting from 1 (there is no 0 for n), whereas the <species> indexing starts at 0.

If changing many sites at once, the abovev command is quite inefficient,
since each put call, adjusts the book-keeping database. To circumvent
the database update you can use the _put method, like so

model._put(...)
model._put(...)
...
model._adjust_database()

note that after using ‘_put’, one must remember to call _adjust_database()
before executing any next step or the database of available processes
will not match the species, the kmc simulation will become incorrect and likely crash after some steps.

Saving and Reloading the State of the Simulation

If one wants to set the whole configuration of the lattice
once can retreive it, save it, and load it with the following commands

model.dump_config("YourConfigurationName")
model.load_config("YourConfigurationName")

While it is not necessary for a regular user to know, those commands use the following internal commands as part of how they function

#saving the configuration uses:
config = model._get_configuration()
#loading configuration uses:
model._set_configuration(config)
model._adjust_database()

However, simply saving and loading the configuration will not allow you to exactly reproduce the simulation where it left off.
To do that, you also need to save and reload the pseusdo random generator’s state

PRNG_state = model.proclist.get_seed().tolist() #This list can be saved as a pickle or in a text file.
model.proclist.put_seed(PRNG_state) #This command takes the PRNG_state as a list and inputs into the simulation.

By saving both the configuration and the PRNG_state, one can
start a simulation again on the same trajectory
(providing one sets the parameters such as temperature and pressure).
The snapshots module includes methods saving and loading the
configuration, PRNG_state, and parameters.
A single command to save all aspects of the simulation
and reload the simulation where it leftoff will later be added into the main code and added to the tutorials.

Running models in parallel

Due to the global clock in kMC there seems to be no
simple and efficient way to parallelize a kMC program.
kmcos certainly cannot parallelize a single system over
processors. However one can run several kmcos instances
in parallel which might accelerate sampling or efficiently
check for steady state conditions.

However in many applications it is still useful to
run several models seperately at once, for example to scan
some set of parameters one a multicore computer. This
kind of problem can be considered embarrasingly parallel
since it requires no communication between the runs.

This is made very simple through the multiprocessing module,
which is in the Python standard library since version 2.6.
For older versions this needs to be downloaded <http://pypi.python.org/pypi/multiprocessing/>
and installed manually. The latter is pretty straightforward.

Then besides kmcos we need to import multiprocessing

from multiprocessing import Process
from numpy import linspace
from kmcos.run import KMC_Model

and let’s say you wanted to scan a range of temperature,
while keeping all other parameteres constant. You first
define a function, that takes a set of temperatures
and runs the simulation for each

def run_temperatures(temperatures):
 for T in temperatures:
 model = KMC_Model()
 model.parameters.T = T
 model.do_steps(100000)

 # do some evaluation

 model.deallocate()

In order to split our full range of input parameters, we
can use a utility function

from kmcos.utils import split_sequence

All that is left to do, is to define the input parameters,
split the list and start subprocesses for each sublist

if __name__ == '__main__':
 temperatures = linspace(300, 600, 50)
 nproc = 8
 for temperatures in split_sequence(temperatures, nproc):
 p = Process(target=run_temperatures, args=(temperatures,))
 p.start()

Development

Contributions of any sort are of course quite welcome.
It is best to first contact the developers. After that,
patches and comments are ideally sent in form of email,
pull request, or github issues.

Below is advice from the original developer:

To make synergizing a most pleasing experience I suggest you use
git, nose, pep8, and pylint

sudo apt-get install git python-nose pep8 pylint

When sending a patch please make sure the nose tests pass, i.e. run
from the top project directory

nosetests

To make testing and comparison even easier it would be helpful if you
create an account with Travis CI [https://travis-ci.org/] and run your
commits through the test suite.

Have a look at Google’s Python style guide [https://google.github.io/styleguide/pyguide.html] as far as style questions go.

Running the Model–the GUI way

After successfully exporting and compiling a model you get
two files: kmc_model.so and kmc_settings.py. These two files
are really all you need for simulations. So a simple
way to view the model is the

python3 kmcos view

command from the command line. For this two work you need to
be in the same directory as these two files (more precisely
these two files need to be in the python import path) and
you should see an instance of your model running.
This feature can be quite useful to quickly obtain an
intuitive understanding of the model at hand. A lot of settings
can be changed through the kmc_settings.py such as rate constant
or parameters.
To be even more interactive you can set a parameter
to be adjustable. This can happen either in the generating XML
file or directly in the kmc_settings.py. Also make sure to set
sensible minimum and maximum values.

How To Prepare a Model and Run It Interactively

If you want to prepare a model in a certain
way (parameters, size, configuration) and
then run it interactively from there, there
is in easy way, too. Just write a little python
script. The with-statement is nice because it takes
care of the correct allocation and deallocation

#!/usr/bin/env python

from kmcos.run import KMC_Model
from kmcos.view import main

with KMC_Model(print_rates=False, banner=False) as model:
 model.settings.simulation_size = 5

with KMC_Model(print_rates=False, banner=False) as model:
 model.do_steps(int(1e7))
 model.double()
 model.double()
 # one or more changes to the model
 # ...
 main(model)

Or you can use the hook in the kmc_settings.py called setup_model.
This function will be invoked at startup every time you call

kmcos view, run, or benchmark

Though it can easily get overwritten, when exporting or rebuilding.
To minimize this risk, you e.g. place the setup_model function
in a separate file called setup_model.py and insert into kmc_settings.py

from setup_model import setup_model

Next time you overwrite kmc_settings.py you just need to add this line
again.

The Model Editor (Deprecated – glade migration is required to revive this feature)

[image: ../_images/screenshot_editor_lattice.png]

The lattice view allows to define sites by simple pointing.

[image: ../_images/screenshot_editor_parameters.png]

Model parameters can be defined including ranges to vary
them over in the runtime viewer.

[image: ../_images/screenshot_editor_species.png]

Species can be added here. The color is used to represent
them in the 2D editor view. The string is an ASE atoms
constructor for display at runtime.

[image: ../_images/screenshot_editor_diffusion.png]

Processes can be added by point and click or by entering
a chemical expression.

Topic Guides

The conceptual parts of this topic guide predate the kmcos paper [http://dx.doi.org/10.1016/j.cpc.2014.04.003]
(arXiv [http://arxiv.org/abs/1401.5278]). Please refer to the paper for a thorough background on kMC
and lattice kMC on crystal surfaces. The more technical parts stated below might still be useful for using
kmcos.

	The Concept of Kinetic Monte Carlo
	Why use Kinetic Monte Carlo?

	Basic Kinetic Carlo Algorithm

	Justification of the Algorithm

	Further Reading

	Modelling Workflows
	kMC Modeling

	kmcos workflows

	The kmcos data model

	How the kmcos kMC algorithm works
	The kmcos O(1) solver

	Temporal acceleration

	The otf Backend
	Reference

	Example

	Advanced OTF rate expressions

	Running otf-kmcos models

	Known Issues

	The Process Syntax
	Adsorption

	Diffusion

	Avoid Double Counting

	Taking It Home

	The Site/Coordinate Syntax
	Manual generation

	Advanced Coordinate Techniques

	Taking it home

	Developer’s guide
	Introduction and disclaimer

	How to edit, install, and test your changes locally

	Some nomenclature

	The three backends

	The structure of the FORTRAN code.

	Key data-structures

	One kmc step in kmcos

	The code generation routines

The Concept of Kinetic Monte Carlo

Why use Kinetic Monte Carlo?

There is a class of systems in nature for which
the spatiotemporal evolution can be described
using a master type of equation. While chemical
reactions at surfaces is one of them, it is not
limited to those.

The master equation imposes that
given a probability distribution [image: \rho_{i}(t)]
over states, the probability distribution at one
infinitesimal time [image: \Delta t] later can be
obtained from

[image: \rho_{i}(t+\Delta t) = \rho_{i}(t) + \sum_{j} -k_{ji}\rho_{i}(t)\mathrm{d}t + k_{ij}\rho_j(t)\mathrm{d}t]

where the important bit is that each [image: \rho(t)]
only depends on the state just before the current state.
The matrix [image: k_{ij}] consists of constant real entries,
which describe the rate at which the system can propagate
from state [image: j] to state [image: i].
In other words the system is without memory which is
usually known as the Markov approximation.

Kinetic Monte Carlo (kMC) integrates this equation
by generating a state-to-state trajectory using a
preset catalog of transitions or elementary steps
and a rate constant for each elementary step. The reason
to generate state-to-state trajectories rather than just
propagating the entire probability distribution at once
is that the transition matrix [image: k_{ij}] easily becomes
too large for many systems at hand that even storing it
would be too large for any storage device in foreseeable
future.

As a quick estimate consider a system with 100
sites and 3 possible states for each site, thus having
[image: 3^{100}] different configurations. The matrix
to store all transition elements would have
[image: (3^{100})^2 \approx 2.66\ 10^{95}] entries, which
exceeds the number of atoms on our planet by roughly 45 orders of
magnitude. 1 And even though most of these elements
would be zero since the number of accessible states is
usually a lot smaller, there seems to be no simple
way to transform to and solve this irreducible matrix
in the general case.

Thus it is a lot more feasible to take one particular
configuration and figure out the next process as
well as the time it takes to get there and obtain
ensemble averages from time averages taken over
a sufficiently long trajectory. The basic steps can
be described as follows

Basic Kinetic Carlo Algorithm

	
	Fix rate constants [image: k_{ij}]

	initial state [image: x_{i}], and
initial time [image: t]

	while [image: t < t_{\mathrm{max}}] do

	draw random numbers [image: R_{1}, R_{2} \in]0,1]]

	find [image: l] such that
[image: \sum_{j=1}^{l} k_{ij} < k_{i,\mathrm{tot}}R_{1} < \sum_{j_1}^{l+1}k_{ij}]

	increment time [image: t\rightarrow t - \frac{\ln(R_{2})}{k_{i, \mathrm{tot}}}]

end

Justification of the Algorithm

Let’s understand why this simulates a physical process.
The Markov approximation mentioned above implies several things:
not only does it mean one can determine the next process from
the current state. It also implies that all processes happen
independently of one another because any memory of the system
is erased after each step. Another great simplification is
that rate constants simply add to a total rate, which is
sometimes referred to as
Matthiessen’s rule [http://en.wikipedia.org/wiki/Matthiessen%27s_rule#Matthiessen.27s_rule],
viz the rate with which any process occurs is simply
[image: \sum_{i}k_{i}].

First, one can show that the probability that [image: n] such processes
occur in a time interval [image: t] is given by a Poisson distribution 2

[image: P(n, t) = \frac{\mathrm{e}^{-k_{\mathrm{tot}}t}(k_{\mathrm{tot}} t)^{n}} {n!} .]

The waiting time or escape time [image: t_{w}] between two such processes
is characterized by the probability that zero such processes have occured

(1)[image: P(0, t_{w}) = \mathrm{e}^{-k_{\mathrm{tot}} t_{w}},]

which, as expected, leads to an average waiting time of

[image: \langle t_{w} \rangle = \frac{\int_{0}^{\infty}\mathrm{d}t_w\ t_w \mathrm{e}^{-k_{\mathrm{tot}} t_w}} {\int_{0}^{\infty}\mathrm{d}t_w\ \mathrm{e}^{-k_{\mathrm{tot}} t_w}} = \frac{1}{k_{\mathrm{tot}}}.]

Therefore at every step, we need to advance the time by a random number that
is distributed according to (1). One can obtain such a random
number from a uniformly distributed random number [image: R_2\in]0,1]]
via [image: -\ln(R_{2})/k_{\mathrm{tot}}]. 3

Second, we need to select the next process. The next process occurs randomly
but if we did this a very large number of times for the same initial state
the number of times each process is chosen should be proportional to its
rate constant. Experimentally one could achieve this by randomly sprinkling
sand over an arrangement of buckets, where the size of the bucket is
proportional to the rate constant and count each hit by a grain of sand in a
bucket as one executed process. Computationally the same is achieved by
steps 2 and 3.

Further Reading

For a very practical introduction I recommend Arthur Voter’s tutorial 4
and Fichthorn 5 for a derivation, why [image: \Delta t] is chosen they
way it is. The example given there is also an excellent exercise for
any beginning kMC modeler. For recent review on implementation techniques
I recommend the review by Reese et al. 6 and for a review over status
and outlook I recommend the one by Reuter 7 .

	1

	Wolfram Alpha’s
estimate [http://www.wolframalpha.com/input/?i=estimated+number+of+atoms+in+the+Earth] for number of atoms on earth.

	2

	C. Gardiner, 2004.
Handbook of Stochastic Methods: for Physics, Chemistry,
and the Natural Sciences. Springer, 3rd edition, ISBN:3540208828.

	3

	P. W. H, T. S. A, V. W. T, and F. B. P, 2007
Numerical Recipes 3rd Edition: The Art of Scientific Computing.
Cambridge University Pres, 3rd edition, ISBN:0521768589, p. 287.
link [http://apps.nrbook.com/c/index.html]

	4

	Voter, Arthur F. “Introduction to the Kinetic Monte Carlo Method.” In Radiation Effects in Solids, 1–23, 2007. http://dx.doi.org/10.1007/978-1-4020-5295-8_1.
link [http://public.lanl.gov/afv/Voter2007-KMCchapter.pdf]

	5

	Fichthorn, Kristen A., and W. H. Weinberg. “Theoretical Foundations of Dynamical Monte Carlo Simulations.” The Journal of Chemical Physics 95, no. 2 (July 15, 1991): 1090–1096.
link [http://jcp.aip.org/resource/1/jcpsa6/v95/i2/p1090_s1]

	6

	Reese, J. S., S. Raimondeau, and D. G. Vlachos. “Monte Carlo Algorithms for Complex Surface Reaction Mechanisms: Efficiency and Accuracy.” Journal of Computational Physics 173, no. 1 (October 10, 2001): 302–321.
link [http://dx.doi.org/10.1006/jcph.2001.6877]

	7

	Reuter, Karsten. “First-principles Kinetic Monte Carlo Simulations for Heterogeneous Catalysis: Concepts, Status and Frontiers”. Wiley-VCH, 2009.
link [http://www.fhi-berlin.mpg.de/th/publications/wiley_reuter.pdf]

Modelling Workflows

At the core of modelling lies the art to capture
the most important features of a system and leave
all others out. kmcos is designed around the fact
that modelling is a creative and iterative process.

A typical type of approach for modelling could be:

	start with educated guess

	calculate outcome

	compare various observables and qualitative
behavior with reference system

	adapt model, goto 2. or publish model

So while this procedure is quite generic it may help
to illustrate that the chances to find and capture
the relevant features of a system are enhanced
if the trial/learn loop is as short as possible.

kMC Modeling

A good way to define a model is to use a paper and pencil to draw
your lattice, choose the species that you will need, draw
each process and write down an expression for each rate constant, and
finally fix all energy barriers and external parameters that you will need.
Putting a model prepared like this into a computer is a simple exercise.
You enter a new model by filling in

	meta information

	lattice

	species

	parameters

	processes

in roughly this order or open an existing one by opening a kMC XML file.

If you want to see the model run
kmcos export <xml-file> and you will get a subfolder with a self-contained
Fortran90 code, which solves the model. If all necessary dependencies are
installed you can simply run kmcos view in the export folder.

kmcos workflows

Since kmcos has several entry points, there are several ways of using it.
This section will outline different ways of using kmcos:

	the render script

Just write complete scripts as outlined in
A first kMC Model–the API way. Export
source from there or inspect XML file with one
of the next methods below.

	kmcos edit, the model GUI editor (deprecated)

Open an existing project *.xml file with

kmcos edit <project_name>.xml

and inspect or edit it through on screen

	the CLI editor

Open an existing project *.xml file with

kmcos import <project_name>.xml

and edit the project interactively on the ipython console.

	edit the XML file

Just open the XML file of your kmcos project with a text
editor of your choice and inspect or your model right
there. This might only be a last resort to figure out
what is going on. XML is often not considered very
readable and note that changing variable names in
one place might often break inconsistencies in other.

The kmcos data model

The guide explains how kmcos handles represent
a kmc model internally, which is important to know
if one wants to write new functionality.

The different functions and front-ends of
kmcos all interact in some way or another
with instances of the Project class. A
Project instance is a representation of
a kmc model. If you fire up ‘kmcos edit’ (deprecated) with
an xml file, kmcos validates the XML file and
stores the content in a Project instance.
If you export source code, kmcos runs over the
Project and creates the necessary Fortran 90
source code.

So the following things are in a Project:

	meta

	lattice(layers)

	species

	parameters

	processes

The language used here stems from modelling atomic
movement on a fixed or evolving lattice like
structure. In a more general
context one may rephrase them as :

	meta -> information about project

	lattice -> geometry

	species -> states

	parameters

	processes -> transitions

How the kmcos kMC algorithm works

kmcos asks you to describe your model to the processor
in seemingly arcane ways. It can save model descriptions
in XML but they are basically unreadable and a pain to edit.
The API has some glitches and is probably incomplete: so why learn it?

Because it is fast (in two ways).

The code it produces is commonly faster than naive implementations
of the kMC method. Most straightforwards implementations of kMC take a time
proportional to 2*N per kMC step,
where N is the number of sites in the system.
However the code that kmcos produces is O(1) until the RAM
of your system is exceeded. As benchmarks have shown this may happen when
100,000 or more sites are required. However tests have also shown
that kmcos can be faster than O(N) implementations from around
60-100 sites. If you have different experiences please let me know
but I think this gives some rule of thumb.

Why is it faster? Straightforward implementations of kMC scan the
entire system twice per kMC step. First to determine the total
rate, then to determine the next process to be executed. The
present implementation does not. kmcos keeps a database of available
processes which allow to quickly pick the next process. It also
updates the database of available processes which cost additional
overhead. However this overhead is independent of the system’s size
and only scales with the degree of interaction between sites, which
is seems hard to define in general terms.

The second way reason why it is fast is because you can formulate
processes in a intuitive fashion and let kmcos figure how to
make fast running code out of it. So we save in human time and
CPU time, which is essentially human time as well. Yay!

To illustrate just how fast the algorithm is the graph below shows
the CPU time needed to simulate 1 million kMC steps on a simple
cubic lattice in 2 dimension with two reacting species and
without lateral interaction. As this shows the CPU time
spent per kMC step as nearly constant for up nearly 10^5 sites.

[image: ../_images/benchmark.png]

Benchmark for a simple surface reaction model. All simulations have been
performed on a single CPU of Intel I7-2600K with 3.40 GHz clock speed.

The kmcos O(1) solver

[image: ../_images/data_structures.png]

The data model underlying the kmcos solver. The central component
is the avail_sites array which stores for each elementary
step the sites for which it is executable. Secondly
it stores the location in memory, where the availability
of the site is stored for direct access. The array of
rate constants holds the numeric rate constant and only
changes, when a physical parameter is changed. The
nr of sites array holds the total number of sites for each
process and needs to be updated whenever
a process becomes available und unavailable. The accum. rates
has to be updated once per kMC step and holds the accumulated
rate constant for each processes. That is, the last field
of accum. rates holds [image: k_{\mathrm{tot}}],
the total rate of the system.

So what makes the kMC solver so furiously fast? The underlying
data structure is shown in the picture above. The most important
part is that the solver never scans the entire system for
available processes except at program initialization.

Please have a look at the sketch of data structures above. Given that
all arrays are initialized and populated, in each kMC step the
following things happen:

In the first step we need to identify the next process and site.
To do so we draw a random number [image: R_{1} \in [0, 1]].
This number has to be scaled to [image: k_{\mathrm{tot}}],
so we multiply it with the last field in accum. rates. Next
we simply perform a
binary search [http://en.wikipedia.org/wiki/Binary_search_algorithm]
for the right process on accum. rates. Having determined the
process, we pick a site using a second random number [image: R_{2}],
which is constant in time since avail sites is filled up with
the available site for each process from the left.

Totally independent of this we calculate the duration of the
current step with another random number [image: R_3] using

[image: \Delta t = \frac{-\log(R_{3})}{k_{\mathrm{tot}}}]

So, while the determination of process and site is
extremely straightforward, the CPU intensive part
just starts now. The proclist module is written
in such a way, for each elementary step it
updates the avail sites array only in the
local neighborhood of the site, where the process
is executed. It is furthermore heuristically
optimized in order to require only a minimal
number of if-statement to figure out which
database updates are necessary. This will be
explained in greate detail in the next subsection.

For the current description it is sufficient to
know that for all database updates by the proclist
module :

	the nr of sites array is updated as well.

	adding or deleting an available site only
takes constant time, since the number of
available sites as well as the memory addresses
is always updated. Thus new sites are simply
add at the end of the list of available sites.
When a site has to be deleted the last site
in the array is moved to the memory slot
available now.

Thus once all local updates are finished the
accum. rates array is simply updated once.
And ready we are for the next kMC step.

Todo

describe translation algorithm

Temporal acceleration

NOTICE: The temporal acceleration is still on an EXPERIMENTAL state. Please
report any bugs encountered.

This implementation of a temporal acceleration algortihm attempts to deal
with the low barrier problem often encountered in kinetic Monte Carlo
simuations. It is based on the acceleration algorithm developed by
Eric Christopher Dybeck, Craig Plaisance and Matthew Neurock,
Journal of Chemical Theory and Computation, 13, 1525 (2017),
http://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b00859

The implementation in kmcos is published in:
Mie Andersen, Craig Plaisance and Karsten Reuter
Journal of Chemical Physics, 147, 152705 (2017),
http://aip.scitation.org/doi/full/10.1063/1.4989511

In order for the scheme to work, it needs to be able to pair all processes
into forward/reverse reactions. This is done according to the
actions/conditions, where the forward process has the same actions as the
conditions of the reverse process and vice versa.
See the example model render_co_oxidation_ruo2_processes_paired.py from
the examples folder for an example.

To enable acceleration, compile with the command: kmcos export model.xml -t
or if using the backend for lateral interactions: kmcos export model.xml -b
lat_int -t. Use syntax kmos export model.xml -b otf -t for the on the fly backend.

The model has four adjustable parameters (c.f. article):

Buffer_parameter (default: 1000): The smaller the value, the more
aggresively the rate constants are scaled. Note that a good starting point is
around the number of sites in the system.

Sampling_steps (default: 20): The number of kmc steps to take between each
reassessment of the scaling factors. This parameter seems neither to be
important for the accuracy nor the efficiency of the code. The default value
should be fine.

Execution_steps (default: 200): The number of previous executions of either
the forward or reverse process that is used to assess equilibrium. This
parameter is also the number of executions of a forward/reverse process that
must have occured in the current superbasin for a process pair to be locally
equilibrated. The default value seems to be close to the optimum efficiency
for most systems tested so far.

Threshold_parameter (default: 0.2): This parameter is used to assess
whether a given process pair is equilibrated. The efficiency of the algorithm
worsens considerably if going below the default value of 0.2, whereas the
accuracy of the algorithm is typically not too sensitive to the exact value.

Overall, the buffer_parameter seems to be the most important parameter for the
accuracy of the algortihm, and one should always perform a careful convergence
test with respect to this parameter before trusting the results. In the limit
of an infinite value for the buffer_parameter, no scaling of the rate constants
will be done.

It is possible to set these four parameters either when initiating a model:
model = KMC_Model(print_rates=False, banner=False, buffer_parameter=1000)
or one can use the set functions: model.set_buffer_parameter(1000).
Get functions are also implemented: model.get_buffer_parameter().
Note that if you change the execution_steps after initializing the model,
the model will be reset (as this parameter controls the length of some
fortran arrays).

Accelerated kmc steps are run using the command: model.do_acc_steps(nsteps).

In order to see what has happened during the simulations, one can use the
commands model.print_scaling_stats() or model.get_scaling_stats(),
which print/return the names of the paired processes as well as the average
used scaling factors and the last set scaling factors (where the averages are
typically higher (closer to 1), since scaling factors are reset to 1 every
time a non-equilibrated reaction is carried out).
Further implemented methods include model.print_scaling_factors and
model.print_proc_pair_eq.

You can also use the command model.set_debug_level(value: 0, 1 or 2) to
activate printing of certain fortran variables.

For models containing many different diffusion processes, the efficiency of
the algorithm can be significantly increased by considering these
processes to be equilibrated (but not locally equilibrated) by default.
In practice this means that the execution of a diffusion process cannot cause
the unscaling of all processes, as is normally the case whenever a
non-equilibrated reaction occurs. However, diffusion processes still need to
execute at least execution_steps times within the superbasin before being
labeled as locally equilibrated and possible being subject to scaling.
This above described behaviour is default for any process containing diff
in the process name.

The otf Backend

NOTICE: The otf backend is still on an EXPERIMENTAL state and not
ready for production.

As described in “How the kmcos kMC algorithm works” the
default kmcos backends (local_smart and
lat_int) produce code which executes in time O(1) with the system size
(total number of sites in the lattice). This is achieved through some
book-keeping overhead, in particular storing every rate constant
beforehand in an array. For some particular class of problems,
i.e. those in which extended lateral interactions are taken into
account. This implies that some elementary processes need to be
included multiple times in the model definition (to account for the
effect of the surrounding lattice configuration on the rate constants).
Depending on the amount of sites taken in account and the number of
different species that participate, the number of repetitions can
easily reach several thousands or more. This leads to two undesired
effects: First the amount of memory required by the book-keeping
structures (which is proportional to the number of processes) could
quickly be larger than your system has available. Second, the kmcos
algorithm is O(1) in system size, but O(N) in number of processes,
which eventually leads to a slow down for more complex systems.

The otf backend was developed with these setbacks in mind. otf stands
for On The Fly, because rate constants of processes affected by
lateral interactions are calculated at runtime, according to user
specifications.

NOTE: Up to now only a limited type of lateral interactions are
supported at the moment, but the development of additional ones
should be easy within the framework of the otf backend.

In this new backend, kmcos is not able to generate O(1) code in the
system size, but now each process corresponds to a full group of
processes from the traditional backends. For this reason, the otf
backend is been built to deal with simulations in which
multisite/multispecies lateral interactions are included and in which
the system size is not too large.

TODO: Put numbers to when_to_use_otf(volume, nr_of_procs)

Reference

Here we will detail how to set up a kmc model for the otf kmcos
backend. It will be assumed that the reader is familiar with
Tutorial “A first kMC Model–the API way” and focus will be in the differences between the
traditional backends (local_smart and lat_int) and otf. Most of the model
elements (Project, ConditionAction, Species, Parameter) work exactly
the same in the new backend.

The Process object, is the one whose usage is most distinct, as
it can take two otf-backend exclusive attributes:

	otf_rate: Represent the expression to be used to calculate the
rate of the process at runtime. It is parsed similarly to the
‘rate_constant’ attribute and likewise can contain all the user
defined parameters, as well as all constant and chemical
potentials know to kmcos. Additionally, special keywords (namely
base_rate and nr_<species>_<flag>) also have an special
meaning. This is described below.

	bystander_list: A list objects from the Bystander class (described
below) to represent the sites which do not participate in the
reaction but which affect the rate constant.

Additionally, the meaning of the ‘rate_constant’ attribute is
modified. This expression now represents the rate constant in the
‘default’ configuration around the process. What this default
configuration means is up to the user, but it will normally be the rate
at the zero coverage limit (ZCL).

Additionally a new model description element, the Bystander, has been
introduced. It has the attributes

	coord: Represents a coordinate relative to the coordinates in the
process.

	allowed_species: This is a list of species, which can affect
the rate constant of the process when they sit in ‘coord’

	flag: This is a short string that works a descriptor of the
bystander. It is useful when defining the otf_rate of the process
to which the bystander is associated.

The rate constant to be calculated at runtime for each Process is
given by the expression in ‘otf_rate’. Apart from all standard
parameters, kmcos also parses the strings

	‘base_rate’: Which is evaluated to the value of the ‘rate_constant’
attribute

NOTE: For now, the ‘base_rate’ expression is required.

	Any number of expressions of the form ‘nr_<species>_<flag>’. Where
<species> is to be replaced by any of the species defined in the
model and <flag> is to be replaced by one of the flags given to the
bystanders of this process.

During export, kmcos will write routines that look at the occupation of
each of the bystanders at runtime and count the total number of each
species within ‘allowed_species’ for each bystander type (flag).

Example

For this we will write down an alternative to the
render_pairwise_interaction.py example file. Most of the script can be
left as is. From the import statements, we can delete the line that
imports itertools, as we won’t be needing it. From then on, up to the point where we have
defined all process not affected by lateral interactions, we do not
need any changes.
We also need to collect a set of all interacting coordinates which
will affect CO desorption rate:

fetch a lot of coordinates
coords = kmc_model.lattice.generate_coord_set(size=[2, 2, 2],
 layer_name='simplecubic_2d')
fetch all nearest neighbor coordinates
nn_coords = [nn_coord for i, nn_coord in enumerate(coords)
 if 0 < (np.linalg.norm(nn_coord.pos - center.pos)) <= A]

as with traditional backends. With the otf backend however, we do not need
to account for all possible combinations (and thus we do not need
the itertools module). In this case, desorption only has one condition
and one action:

conditions = [Condition(species='CO',coord=center)]
actions = [Action(species='empty',cood=center)]

And we use the coordinates we picked to generate some bystanders:

bystander_list = [Bystander(coord=coord,
 allowed_species=['CO',],
 flag='1nn') for coord in nn_coords]

As we are only considering the CO-CO interaction, we only include it in
the allowed_species, but we could easily have included more species. Now,
we need to describe the expressions to calculate the rate constant at runtime.
In the original script, the rate is given by:

rate_constant = 'p_COgas*A*bar/sqrt(2*m_CO*umass/beta)'/
 '*exp(beta*(E_CO+%s*E_CO_nn-mu_COgas)*eV)' % N_CO

where the N_CO is calculated beforehand (in the model building step) for
each of the individual lattice configurations. For the otf backend, we
define the ‘base’ rate constant as the rate at ZCL (N_CO = 0), that is:

rate_constant = 'p_COgas*A*bar/sqrt(2*m_CO*umass/beta)'/
 '*exp(beta*(E_CO-mu_COgas)*eV)'

Finally, we must provide the expression given to calculate the rate
given the amount of CO around in our bystanders. For this we simply
define:

otf_rate = 'base_rate*exp(beta*nr_CO_1nn*E_CO_nn*eV)'

All of this comes together in the process definition:

proc = Process(name='CO_desorption',
 conditions=conditions,
 actions=actions,
 bystander_list = bystander_list,
 rate_constant=rate_constant,
 otf_rate=otf_rate)
kmc_model.add_process(proc)

Advanced OTF rate expressions

In the example above, the otf_rate variable for the processes included only a single
expression that defined the rate taking into account the values of the nr_<species>_<flag>
variables. For more complex lateral interaction models, this can become cumbersome.
Alternatively, users can define otf_rate expressions that span several expressions/lines.
Lets assume we are dealing with a model similar to the one above, but now include an additional
species, O, and the corresponding lateral interaction energy E_CO_O between these two.
Similarly to the previous example, the rate would be given by:

rate_constant = 'p_COgas*A*bar/sqrt(2*m_CO*umass/beta)'/
 '*exp(beta*(E_CO+%s*E_CO_nn+%s*E_CO_O-mu_COgas)*eV)' % (N_CO,N_O)

where N_O is the number of nearest-neighbour O. This rate expression is still fairly simple and the
previously described method would work by doing:

otf_rate = 'base_rate*exp(beta*(nr_CO_1nn*E_CO_nn+nr_O_1nn*E_CO_O)*eV)'

However, equivalently (and maybe more easy to read) we could define:

otf_rate = 'Vint = nr_CO_1nn*E_CO_nn+nr_O_1nn*E_CO_O\\n'
otf_rate += 'otf_rate = base_rate*exp(beta*Vint*eV)'

in which we have defined an auxiliary variable Vint. Behind the scenes, these lines are included
in the source code automatically generated by kmcos. Notice the inclusion of explicit \\n characters.
This is necessary because we want the line breaks to be explicitly stored as \n in the .xml file for export
(spaces are ignored by the xml export engine). Since these expression are ultimately compiled
as Fortran90 code, variable names are not case sensitive (i.e. A = ... and a = ... declare
the same variable).

Additionally, when we want to include more than one line of code in otf_rate, we additionally need to include a line that states otf_rate = ... in order for kmcos
to know how to calculate the returned rate.

Running otf-kmcos models

Once the otf model has been defined, the model can be run in a fashion very similar to the default kmcos backends most of the differences arise from the

Todo

The rest of this sentence seems to have gotten lost somehow.

Known Issues

	
	Non-optimal updates to rates_matrix.

	The current implementation of the backend is still non-optimal and
can lead to considerable decrease in speed for larger systems sizes
(scaling O(N_sites)). This will be improved (O(log(N_sites))) once
more tests are conducted.

	
	Process name length limit

	f2py will crash during compilation if a process has a name lager
than approx. 20 characters.

The Process Syntax

In kMC language a process is uniquely defined by a
configuration before the process is executed,
a configuration after the process is executed,
and a rate constant. Here this model is used to
define a process by giving it a :

	condition_list

	action_list

	rate_constant

As you might guess each condition corresponds to one
before, and each action coresponds to one after.
In fact conditions and actions are actually of the same
class or data type: each condition and action consists of
a coordinate and a species which has to be or will be at
the coordinate. This model of process definition also
means that each process in one unit cell has to be
defined explicitly. Typically one a single crystal
surface one will have not one diffusion per species but
as many as there are equivalent directions :

	species_diffusion_right

	species_diffusion_up

	species_diffusion_left

	species_diffusion_down

while this seems like a lot of work to define that
many processes, it allows for a very clean and simple
definition of a process itself. Later you can use
geometric measures to abstract these cases as you will see
further down.

Adsorption

Let’s start with a very simple and basic process: molecular
adsorption of a gas phase species, let call it A on a
surface site. For this we need a species

from kmcos.types import *
kmc_model = kmcos.create_kmc_model()

A = Species(name='A')
kmc_model.add_species(A)

empty = Species(name='empty')
kmc_model.add_species(empty)

and the coordinate of a surface site

layer = Layer(name='default')
kmc_model.add_layer(layer)
layer.sites.append(Site(name='a'))
coord = kmc_model.lattice.generate_coord('a.(0,0,0).default')

which is for now all we need to define an adsorption
process:

adsorption = Proces(name='adsorption_A_a',
 condition_list=[Condition(coord=coord,
 species='empty')],
 action_list=[Action(coord=coord,
 species='A')])
kmc_model.add_process(adsorption)

Now this wasn’t hard, was it?

Diffusion

Let’s move to another example, namely the diffusion of
a particle to the next unit cell in the y-direction.
You first need the coordinate of the final site

final = kmc_model.lattice.generate_coord('a.(0,1,0).default')

and you are good to go

diffusion_up = Process('diffusion_A_up',
 condition_list=[Condition(coord=coord,
 species='A'),
 Condition(coord=final,
 species='empty')],
 condition_list=[Condition(coord=coord,
 species='empty'),
 Condition(coord=final,
 species='A')],
kmc_model.add_process(diffusion_up)

You can complicated this ad infinitum but you know all elements
needed to define processes.

Avoid Double Counting

Finally a word of warning: double counting is a phenomenon
sometimes encountered for those process where there is more
than one equivalent direction for a process and the coordinates
within the process are also equivalent. Think of dissociative
oxygen adsorption. Novices typically collect all possible
directions (e.g. right, up, left, down) and then define this
process for each direction. This may be incorrect,
depending on how the rate constant value was defined.
If the rate constant represents a net rate for
adsorption / desorption from a pair of sites,
(from an average or from a single transition state that bridges two sites),
then the right,up,left, down procedure will have double counted the process because e.g. adsorption_up is
the same processes as adsorption_down, just executed from one
site above or below. One can compensate by dividing each
adsorption rate constant by 2 and also each desorption rate constant by 2.
One can also avoid double counting by only defining geometrically equivalent
sites one time per unit cell: a simple trick is to only consider processes
in the positive directions, for example.

However, note that if there are two transition state possibilities
(one above one site, one above the other site)
due to a heterolytic cleavage transition state,
then there are supposed to be double processes and it is not double
counting, just two paths that achieve the same reactants and products.
Most rate constants in the literature for dissociative adsorption
are defined as an average for the two sites,
or involve a single homolytic transition state,
and thus most cases of dissociate adsorption should have a single process
between up and down as well as between left and right
(yielding two processes, not four, for a simple cubic system).

Taking It Home

	A process consists of conditions, actions and a rate constant

	double counting is best avoided from the beginning

The Site/Coordinate Syntax

In the atomistic kMC simulations pursued here
one defines processes in terms of sites
on some more or less fixed lattice.
This reflects the physical observation that
molecules on surfaces adsorb on very specific
locations above a solid.

To represent this in a computer program, we first need to
make a small but crucial differentiation: namely the difference
between the sites of a (surface) structure and the coordinates
of a process. The difference is that a given structure contains
each site defined exactly once, whereas a process may use the same
site several times however in a different unit cell. So this
differentation owes to the fact that we commonly simulate highly
periodic structures.

Ok, having this out of the way you start to define
and use sites and coordinates. The minimum constructor for a
site is

site = Site(name='site_name')

where site_name can be a string without spaces and all names
should be unique within one layer. Usually it is reasonable to
add a position in relative coordinates right-away like so

site = Site(name='hollow', pos='0.5 0.5 0.0')

which would place the site at the bottom center of the cell. A direct
benefit is that you can measure distances between coordinates
later on to, e.g. select all nearest neighbor or next-nearest neighbor
sites.

A site can have some more attributes. Some of them are only needed
in conjunction with GUI use. It is worth to know that each site
can have one or more tags. This way one create types of site and
conveniently select all sites with a one more tags. The syntax here
is as follows

site = Site(name='hollow', pos='0.5 0.5 0.0', tags='tag1 tag2 ...')

The second part is to generate the coordinates that are
used in the process description.

Manual generation

To quickly generate single coordinates you can generate it
from a Project like so

kmc_model.lattice.generate_coord('hollow.(0,0,0).layer_name')

Let’s look at the generation string. The general syntax is

site_name.offset.layer_name

The site_name and the layer_name must have been defined before.
The offset is a tuple of three integer numbers (0, 0, 1) and specifies the
relative unit cell of this coordinate. Of course this only becomes meaningful
as soon as you use more than one coordinate in a process.

Missing values will be filled in from the back using default values,
such that

site -> site.(0,0,0) -> site.(0,0,0).default_layer

Advanced Coordinate Techniques

Generating large process lists with a lot of similar or even
degenerate processes is a very boring task. So we should try
to use programming logic as much as possible. Here I will outline
a couple of idioms you can use here.

Often times it is handier (less typing) to generate a larger set
of coordinates at first and then select different subsets from it
in a process definition. For this purpose you can use

pset = kmc_model.lattice.generate_coord_set(size=[x,y,z], layer_name='layer_name')

This collects all sites from the given layer and generates
all coordinates in the first unit cell (offset=(1,1,1))
and all x, y, and z unit cells in the respective
direction.

To select subsets in a readable way I suggest you use list comprehensions,
like so

[x for x in pset if not x.offset.any()]

which again selects all sites in the first unit cell. Or to select all
site tagged with foo you could use

[x for x in pset if 'foo' in x.tags.split()]

or having defined a unit cell size and a site position your can measure
real-space distances between coordinate like so

np.linalg.norm(x.pos-y.pos)

Or of course you can use any combination of the above.

Taking it home

	sites belong to a structure while coordinates belong to a process

	coordinates are generated from sites

	coordinate sets can be selected and chopped using list comprehensions
and tags

Developer’s guide

Introduction and disclaimer

This guide intends to work as an introduction into kmcos’ internal
structure, including both the automatically generated Fortran code, as
well as the code generation procedure. As the name suggest, the intended
audience are those who want to contribute to kmcos as developers. This
guide will assume that you are familiar with the way in which kmcos is
used. If that is not the case, you should start reading the sections of
the documentation [http://kmcos.readthedocs.io] intended for users
and/or go through the Intro to
kmcos [http://github.com/jmlorenzi/intro2kmcos] tutorial.

DISCLAIMER: This is information is provided with the hopes that it
will ease your way into kmcos’ codebase, but it may contain errors. In
the end only the interpretation of the code itself can really let you
effectively add functionality to kmcos.

For developers of the project, branch management will follow
this flowchart [https://github.com/kmcos/kmcos/tree/master/doc/source/topic_guides/GithubGuideKmcos.pptx]

How to edit, install, and test your changes locally

First, install kmcos, then you must locate your kmcos installation. Typically it will be in a directory similar to: ~/VENV/kmcos/lib/python3/site-packages/
If you have difficulty finding it, use | python3 -c”import sys; print(sys.path)” | Then, inside tthe site-packages directory, if kmcos has an “egg” file, you must copy the kmcos directory out of the egg file directly into the site_packages directory. After that, delete any other kmcos egg files or directories so that there is a single kmcos directory inside of site_packages.

OPTION 1 (recommended): Edit the source code directly inside site_packages, or edit the code elsewhere and then paste over the files in site_packages. Usually, this will be sufficient.

OPTION 2: Edit the source code elsewhere (such as in a shared folder) and reinstall using the setup.py:

source ~/VENV/kmcos/bin/activate #this is the command to enter the python virtual environment
pip install .

This will reinstall kmcos.

Before pushing to github, you should enter the the tests directory and run the unit tests.

Some nomenclature

For some terms used frequently in this guide, there might exist some
ambiguity on exact meaning. Here we present some definitions to try to
alleviate this. Probably some ambiguity will remain, but hopefully not
anything that cannot be discerned from context.

site: In kmcos, this can have two different interpretations: either a
specific node of the lattice or a type of site, e.g. a crystallographic
site (top, fcc, hollow…). In this guide we use the former meaning: an
specific position on the simulation lattice. When we need to indicate
the second meaning, we will use site type.

coordinate: indicates the relative position of a site in the lattice
with respect to some other site. In general, a coordinate will be given
as a pair of site pair and an offset representing the relative positions
of the unit cells (in units of the unit cell vector). The site used as
reference will depend on the context.

process: a set of elementary changes that can occur on the lattice
state on a single kMC step. A process is defined by a list of conditions
and actions, and a rate constant expression.

executing coordinate: A coordinate associated to each process to be
used as a reference for the relative positions of conditions and actions
when defining the Fortran routines. In local_smart and lat_int
the executing coordinate is found with the help of the
kmcos.types.Process.executing_coord method. In otf the concept of
executing coordinate is not used, the reference position in the lattice
is the central position implied by the user during model definition,
i.e. the position in which coordinates have offset = (0, 0, 0).

event: a process for which an specific site has been selected.

active event: An event that can be executed given the current state
of the lattice, i.e. an event for which all associated conditions are
fulfilled.

lateral interactions: For kmcos models built for the local_smart
or lat_int, we will say that such model includes lateral
interactions if there is one or more groups of processes with the
following characteristics:

	their actions are all identical

	the conditions occurring on the same sites as the actions are identical

	there is a group of additional sites in which these processes have conditions, but these conditions are different for each process in the group

These processes represent the same change in the lattice, but under a
difference state of the rest of the sites. These groups of processes are
typically used to account for the effect of surrounding species on the
values of the rate constants, i.e. the lateral interactions.

lateral interaction group: The group of processes defined by items
a, b, c above.

bystander (local_smart or lat_int backends) The set of
conditions of item c above, i.e. conditions of a process in a lateral
interaction groups that do not have an action associated to it.

bystander site/coordinate: A site/coordinate associated with a
bystanders.

participating sites: Sites associated with actions from item a and
conditions from item b of the definition of a lateral interaction group.

lateral interaction event group: a collection of events occurring on
the same lattice site and whose associated processes belong to the same
lateral interaction group. Due to the nature of lateral interaction
groups, only one of such events can be possible in a lattice at any
given time.

bystander (otf backend): In the otf backend, the concept of
bystander is explicitly included in the model definition, i.e. it is a
new class kmcos.types.Bystander exclusive to this backend. An otf
model is said to include lateral interactions if one of its processes
includes such bystanders. Note that models without lateral
interactions should not be built using the otf backend, as
local_smart will definitely be more efficient.

The three backends

While most kmcos users will only need to worry about the Python interface
to build and run the model, developers will also need to familiarize
with the FORTRAN core code. The exact structure of this code depends on
the backend that one selects. Which backend is most appropriate
depends on the nature of the kMC model being implemented. Below we
present a qualitative description of each backend.

local_smart

This is the original kmcos backend and has been used as a basis and
inspiration for the rest of the backends. It was built with the implicit
objective of offering the best run time performance at the expense of
memory usage. For this reason, a key element in this backend is a
precalculated list of rate constants, stored in the base/rates
array.

This is the most efficient backend when the number of different rate
constants list is reasonable small.

For models with very large number of different processes nproc (such
as cases in which large lateral interaction groups exist) some
undesirable effects can occur:

	The time needed to run a kMC step can become large, as it scales as
[image: \mathcal{O}(\texttt{nproc})].

	The bookkeeping data structures, which scale in size with the total
number of processes, can become too big for available memory.

	The size of individual source code files can become very large,
making compilation very slow or even impossible due to memory
requirements.

lat_int

The lat_int backend is the first attempt to alleviate the problems
of local_smart for models with lateral interaction groups of
moderate size. The main differences between them is that lat_int
structures the generated code around the different lateral interaction
groups and splits the source files accordingly. This way compilation is
faster and requires less memory. A necessary consequence of this is that
the logic for the lattice update needs to be different.

TODO: I seem to recall that there are models for which lat_int
outperforms local_smart, even when local_smart can eventually
compile and run. This should be verified and interpreted (i.e. is
lat_int smarter than local_smart some times? If so, why?).

otf

For processes with lots of lateral interactions, i.e. very large lateral
interaction groups, keeping a list of precalculated rate constants (and
the proportionally large bookkeeping arrays) is unfeasible. The
alternative is to evaluate rate constants during runtime, i.e. on the
fly. kMC models built using the otf array do just that. To
accommodate for this, the concept of a process in otf is different
to that in the other backends. In otf, all members of a lateral
interaction group are represented by a single process. Therefore, the
total number of processes and, consequently, the size of bookkeeping
arrays is much smaller. The counterpart from this improvement is that
now a kMC step scales linearly with the system size (instead of being
constant time).

The structure of the FORTRAN code.

Here we present a description of the different files in which the source
code is split. We use the local_smart backend as a basis for this
description, as it is the original backend and contains
the fewest files. For the other backends, we will only explain
the differences with local_smart.

All kmcos models contain train main source files: base.f90,
lattice.f90 and proclist.f90. Each of these source files defines
a module of the same name. These modules are exposed to Python
interface.

It is important to know that some of the fortran code
comes from the directory kmcosfortran_srcand some of the fortran code comes from the file
kmcosio.py , so io.py should be checked
as well, if needed, when looking for fortran source code.

Files for the local_smart backend

base.f90

As it name suggests, base.f90 contains the lowest-level elements of the model. It implements the kMC method in a 1D lattice. The base module contains all the bookkeeping arrays described in Key data-structures and the routines used to

	allocate and deallocate memory

	update of the bookkeeping arrays for lattice configuration and
available processes

	using such arrays to determine the next process to be executed

	keep track of kMC time and total number of steps

	keep track of the number of executions of each individual process
(procstat)

	saving an reloading the system’s state

Many routines in base take a variable site as input. This is an
index (integer value) that identifies a site on the 1D representation of
the lattice (i.e. the ND lattice of the problem, flattened).

The contents of base.f90 are (mostly) fixed, i.e. it is (almost) the
same file for all kmcos models (as long as they use the same backend).

lattice.f90

The role of the lattice.f90 is to generate the map from the ND
lattice (N=1, 2, 3) to the 1D lattice that is handled by base.f90.
The lattice module imports subroutines from the base module.
Beside the look-up arrays lattice2nr and nr2lattice, used to map
to and from the 1D lattice, this module also implements wrappers to many
of the basic functions defined in base.f90. Such wrappers take now a
4D array lsite variable, designating the site on a 3D lattice,
instead of the single integer site used by base. The first three
elements of this array indicate the ((x, y, z)) position of the
corresponding unit cell (in unit cell vector units), while the fourth
indicates the site type. In cases of lower dimensional lattices, some
elements of the site array simply stay always at a value of 0.

The lattice.f90 file needs to be generated especially for each
model, but only changes if the lattice used changes (e.g. if the number
of site types or the dimension of the model).

proclist.f90

proclist.f90 includes the routines called by the Python interface
while running the model. In addition, it encodes the logic necessary to
update the list of active events (i.e. the main bookkeeping arrays,
avail_procs and nr_of_sites), given that a specific process has
been selected for execution. The module imports methods and variables
from both the base and lattice modules.

The proclist.f90 files needs to be generated specially for each
model, and is the file that changes most often during model development,
as it is updated every time a process changes.

Files for the lat_int backend

proclist.f90

Some of the functionality that existed here in local_smart has been
moved to different source files. While the functions called by the
Python interface during execution remain here, the logic to update the
list of active events is moved to nli_*.f90 and run_proc_*.f90
files. In addition, constants are also defined in an independent module
on the separate file proclist_constants.f90.

proclist_constants.f90

Defines a module declaring several constants used by proclist,
nli_* and run_proc_* modules.

nli_<lat_int_nr>.f90

There is one of such file for each lateral interaction group. These
source files are enumerated starting from zero. Each of them implements
a module called nli_<lat_int_nr> which contains a single function
nli_<lat_int_group>. <lat_int_group> is the name of the lateral
interaction group, which coincides with the name of the first (lowest
index) process in the group. These functions implement logic to decide
which process from the group can occur on a given site, if any.

run_proc_<lat_int_nr>.f90

There is one of such file for each lateral interaction group. These
source files are enumerated starting from zero. Each of them implements
a module called run_proc_<lat_int_nr> that contains a single
subroutine run_proc_<lat_int_group>. <lat_int_group> is the name
of the lateral interaction group, which coincides with the name of the
first (lowest index) process in the group. This routine is responsible
of calling lattice/add_proc and lattice/del_proc for each
lateral interaction group that should potentially be added or deleted.
For this, it passes results of the nli_<lat_int_group> functions as
argument, to ensure correct update of the list of active events.

Files for the otf backend

proclist.f90

Similar to lat_int, this file contains the functions called by the
Python interface at runtime. Contrary to local_smart, the logic for
the update of the active event list is in the run_proc_<proc_nr>.f90
files and constants shared among different modules are defined on
proclist_constants.f90.

proclist_constants.f90

Defines constant values to be shared between the proclist,
proclist_pars and run_proc_*.

proclist_pars.f90

This file implements the modules proclist_pars (“process list
parameters”) and takes care of providing functionality that that only
existed at the Python level in the earlier backends. More importantly,
it implements the functions used to evaluate rate constants during
execution. In more detail it:

	Implements the Fortran array userpar to access user-defined
parameters at FORTRAN level, and functionality to update them from
Python.

	When necessary, it implements a chempots array for accessing the
chemical potentials in FORTRAN.

	It includes the routines gr_<proc_name> and rate_<proc_name>,
which are used to evaluate the rate constants on the fly.

run_proc_<proc_nr>.f90

There is one of such file for each process in the model. They implement
modules run_proc_<proc_nr> containing a run_proc_<proc_name>
subroutine each. These routines contain the decision trees that figure
out which events need to be activated or deactivated and call the
corresponding functions from base (add_proc and del_proc).

Key data-structures

Here we describe the most important arrays required for bookkeeping in
kmcos. Understanding what information these arrays contain is crucial to
understand how kmcos selects the next kMC process to be executed. This is
explained in One kmc step in kmcos. All these data
structures are declared in the base module and their dimensions are
based on the “flattened” representation of the lattice in 1 dimension.

Important scalar variables

	nr_of_proc (int): The total number of processes in the model

	volume (int): The total number of sites in the lattice

Important arrays

rates

	Dimension: 1

	Type: float

	Size: nr_of_proc

Contains the rate constants for each process. This array is kept fixed
during the execution of the kMC algorithm, and is only to be changed
through the Python interface.

In the otf backend, rate constants are obtained on-the-fly during
the execution of the kMC algorithm and stored in the rates_matrix array and the rates arrays
contains simply a set of “default” rate constant values. These values
can optionally (but not necessarily) be used to help with the
calculation of the rates.

lattice

	Dimension: 1

	Type: int

	Size : volume

This array contains the state of the lattice, i.e. which species sits on
each site.

nr_of_sites

	Dimensions: 1

	Type: int

	Size: nr_of_proc

This array keeps track of the number of currently active events
associated to each process, i.e. it holds the number of different sites
in which a given process can be executed.

accum_rates

	Dimensions: 1

	Type: float

	Size: nr_of_proc

This array is used to store partial sums of rate constants, ordered
according to process index. In local_smart and lat_int, thanks
to the fact that all copies of a process have an equal rate constant,
the values of this array can be calculated according to

(1)[image: \text{\texttt{accum_rates(i)}} = \sum_{j=1}^{\text{\texttt{i}}} \text{\texttt{rates(j)}} \, * \, \text{\texttt{nr_of_sites(j)}}]

In otf rate constants for a given process are different for a given
site. Therefore, evaluation is more involved, namely

[image: \text{\texttt{accum_rates(i)}} = \sum_{j=1}^{\text{\texttt{i}}} \sum_{k=1}^{ \texttt{nr_of_sites(j)}} \text{\texttt{rates_matrix(j, k)}}]

In all backends, the contents of accum_rates are reevaluated every
kMC step.

avail_sites

	Dimensions: 3

	Type: int

	Size: nr_of_proc * volume * 2

This is arguably the most important bookkeeping array for kmcos, which
keeps track of which processes can be executed each sites on the
lattice, i.e. keeps track of all active events. To accelerate the update
time of these arrays (see here), the
information this array contains is duplicated. In practice,
avail_sites can be considered as two 2D arrays of size
nr_of_proc * volume.

Each row in avail_sites(:, :, 1) correspond to a process, and
contains a list of the indices for the sites in which said process can
occur according to the current state of the lattice, i.e. a list of the
sites with active events associated to this process. Each site index
appears at most once on each row. This array is filled from the right.
This means that the first nr_of_sites(i) elements of row i will
be larger than zero and smaller or equal than volume, while the last
(volume - nr_of_sites(i)) elements will all be equal to zero. The
elements of the rows of avail_sites(:, :, 1) are not sorted,
and their order depends on the (stochastic) trajectory the system has
taken.

The rows on avail_sites(:, :, 2) function as an index for the rows
of avail_sites(:, :, 1). Given 1 <= i <= nr_of_proc and
1 <= j <= volume, if process i can occur on site j, then
avail_sites(i, j, 2) = k, with k >= 1 and such that
avail_sites(i, k, 1) = j. Conversely, if process i cannot occur
on site j, then avail_sites(i, j, 2) = 0 and no element in
avail_sites(i, :, 1) will be equal to j.

[image: ../_images/avail_sites_example.png]

A example of an avail_sites array for a model with 5 processes and 10 sites.

procstat

	Dimensions: 1

	Type: long int

	Size Total number of processes (nr_of_proc)

This array is used to keep track of how many times each process is
executed, i.e. the fundamental result of the kMC simulation. This array
is used by the Python interface to evaluate the turnover frequencies
(TOFs).

Additional arrays for the otf backend

The otf backend uses all the bookkeeping arrays from the other two
backends, but needs in addition the following

accum_rates_proc

	Dimension: 1

	Type: float

	Size: volume

This array is updated in every kMC step with the accumulated rate for
the process selected for execution. This is necessary because the site
cannot be selected uniformly random from avail_sites, but needs to
be picked with a binary search on this array.

rates_matrix

	Dimension: 2

	Type: float

	Size: nr_of_proc * volume

This matrix stores the rate for each current active event. The entries
of this matrix are sorted in the same order as the elements of
avail_sites(:, :, 1) and used to update the accum_rates array.

One kmc step in kmcos

[image: ../_images/step_local_smart.png]

A kMC step using kmcos’ local_smart backend. Subroutines are represented by labeled boxes. The content of a given box summarizes the operations performed by the subroutine or the subroutines called by it. Variables (scalar or arrays) are indicated by gray boxes. An arrow pointing to a variable indicates that a subroutine updates it (or defines it). Arrows pointing to a subroutine indicate that the routine uses the variable. In kmcos, the passing of information occurs both through subroutine arguments and through module-wide shared variables; this distinction is not present in the diagram.

The main role of the bookkeeping arrays from last section, specially
avail_sites and nr_of_sites, is to make kMC steps execute fast
and without the need to query the full lattice state. The routines
do_kmc_step and do_kmc_steps from the proclist module
execute such steps. The diagram above represents the functions called by these
routines.

During system initialization, the current state of the system is written
into the lattice array and the avail_sites and nr_of_sites
arrays are initialized according to this. With these arrays in sync, it
is possible to evaluate accum_rates according to eq. (1). With this information, and using two random
numbers [image: 0 < \texttt{ran_proc}, \texttt{ran_site} < 1], the
routine base/determine_procsite can select the next event to
execute. This subroutine first selects a process according to the
probabilities given by accum_rates. This is achieved by multiplying
the total accumulated rate, i.e. the last element of accum_rates,
times ran_proc. The subroutine base/interval_search_real
implements a binary
search [http://en.wikipedia.org/wiki/Binary_search_algorithm] to find
the index proc such that

[image: \texttt{accum_rates(proc -1)} \le \\ \texttt{ran_proc * accum_rates(nr_of_proc)} \le \\ \texttt{accum_rates(proc)}.]

This step scales O([image: \log] (nr_of_proc)). Then, a site is
selected with uniform probability from the (non-zero) items of
avail_sites(proc,:,1). This is valid because all individual events
associated to a given processes share the same rate constant. This way,
we avoid searching through the whole lattice, and we are able to select
a site at constant time.

After this, the proclist/run_proc_nr subroutine is called with
proc and site as arguments. This function first calls
base/increment_procstat with proc as argument to keep track of
the times each process is executed. Next, it uses the nr2lattice
look-up table to transform the scalar site variable into the 4D
representation (see lattice.f90). Finally, this
function calls the methods which actually update the the lattice state
and, consistent with this, the bookkeeping arrays. These are the
proclist/take_<species>_<layer>_<site> and
proclist/put_<species>_<layer>_<site> methods. Given a lattice site,
take methods replace the corresponding species sitting there with
the default species. The put methods do the converse. The set of put and
take routines that need to be executed by each process are directly
obtained from the conditions and actions from the process definition.
These are hard-coded into the proclist/run_proc_nr routine,
organized in a case-select block for the proc variable.

The proclist/take_<species>_<layer>_<site> and
proclist/put_<species>_<layer>_<site> subroutines are arguably the
most complex of a local_smart kmcos model. Their ultimate goal is to
call lattice/add_proc and/or lattice/del_proc to update
avail_sites and nr_of_sites in correspondence with the change in
the lattice they are effecting. To do this they need to query the
current state of the lattice. The structure of these routines is
described below.

The actual update of avail_sites and nr_of_proc is done by the
base/add_proc and base/del_proc functions. Under Updating avail_sites below, we explain how
these functions make use of the structure of avail_sites to make
updates take constant time. Once these arrays have been updated, the
bookkeeping arrays are again in sync with the lattice state. Therefore,
it is possible to reevaluate accum_rates using eq. (1) and start the process for the selection of the next step.

The put and take routines

These subroutines take care of updating the lattice and keeping the
bookkeeping arrays in sync with it. When the occupation of a given site
changes, some formerly active events need to be deactivated, while some
formerly inactive events need to be activated. Figuring out which those
events are is the main role of the put and take routines.

In kmcos, processes are represented by a list of conditions and a list of
actions. An event is active if and only if all the conditions of its
associated process are satisfied. As the put and take routines only look
at the change of an individual site in the lattice, determining which
events need to be turned-off is straightforward: All active events which
have a condition that gets unfulfilled on the site affected by the
put/take routine will be deactivated. This is the first thing put/take
routines do after updating the lattice.

Deciding which processes need to be activated is more involved. All
inactive events with a condition that gets fulfilled by the effect of
the put/take routine are candidates for activation. However, in this
case, it is necessary to check the lattice state to find out whether or
not such events have all other conditions fulfilled. A straightforward
of accomplishing this is to sequentially look at each event, i.e.:

FOR each candidate event E
 TurnOn = True
 FOR each condition C of E
 IF C is unfulfilled:
 TurnOn = False
 break
 ENDIF
 ENDFOR
 IF TurnOn is True:
 Activate E
 ENDIF
ENDFOR

However, chances are that many of the candidate events will have
conditions on the same site. Therefore, a routine like the above would
query a given lattice site many times for each execution of a put/take
routine. For complex models with many conditions in the processes, this
could become quickly the main computational bottleneck of the
simulation.

The alternative to this naive approach, is to try to build a decision
tree that queries the lattice state more efficiently. kmcos generates
such a decision tree using an heuristic algorithm. The main idea behind
it is to group all the sites that would need to be queried and to sort
them by the number of candidate events with conditions on them. A
decision tree is built such that sites are queried on that order, thus
prioritizing the sites that are more likely to reduce the number of
processes that need activation. Such decision trees are implemented as
select-case trees in the put/take routines and typically occupy the bulk
of the code of proclist.f90. A more detailed description on how this
is done is discussed below.

Updating avail_sites

[image: ../_images/add_proc.png]

Adding an process to the =avail_sites= array. Pseudocode for the addition of a process is also indicated.

The avail_sites and nr_of_sites arrays are only updated through
the base/add_proc and base/del_proc subroutines, which take a
process index proc and a site index site as input arguments.
Adding events is programmatically easier. As the rows of
avail_sites(:, :, 1) are filled from the left, the new event can be
added by changing the first zero item of the corresponding row, i.e.
avail_sites(proc, nr_of_sites(proc) + 1, 1), to site and
updating avail_sites(:, :, 2) and nr_of_procs accordingly. An
example of this procedure is presented in the figure above.

[image: ../_images/del_proc.png]

Deleting an process from =avail_sites= array. Pseudocode for the deletion of a process is also indicated.

Deleting an event is slightly more involved, as non-zero elements in
avail_sites(:, :, 1) rows need to remain contiguous and on the left
side of the array. To ensure this, the element that would be deleted
(somewhere in the middle of the array) is updated to the value of the
last non-zero element of the row, which is later deleted. To keep the
arrays in sync, avail_sites(. , . , 2) is also updated, by updating
the index of the moved site to reflect its new position. Finally,
avail_sites(site, proc, 2) is set to zero. The figure
above shows an example and presents pseudocode for such an update.
Having the information in avail_sites(:,:,1) duplicated (but
restructures) in avail_sites(:,:,2) allows these update operations
to be performed in constant time, instead of needing to perform updates
that scale with the system size.

A kmc step with the lat_int backend

[image: ../_images/step_lat_int.png]

A kMC step using kmcos’ lat_int backend. Subroutines are represented by labeled boxes. The content of a given box summarizes the operations performed by the subroutine or the subroutines called by it. Variables (scalar or arrays) are indicated by gray boxes. An arrow pointing to a variable indicates that a subroutine updates it (or defines it). Arrows pointing to a subroutine indicate that the routine uses the variable. In kmcos, the passing of information occurs both through subroutine arguments and through module-wide shared variables; this distinction is not present in the diagram.

The process of executing a kMC step with the lat_int backend is very
similar as that of the local_smart backend. In particular, the way
avail_sites, nr_of_procs and accum_rates are updated, as
well as the selection of process and site indices proc and site
that will be executed is identical. The only difference exists withing
the call of the proclist/run_proc_nr routine, as the routines for
finding which events need to be (de)activated are implemented
differently.

In lat_int, proclist/proc_run_nr does not call put and
take subroutines (which do not exist in the lat_int code-base),
but calls subroutines specific to each lateral interaction group
run_proc_<lat_int_nr>/run_proc_<lat_int_group>. They do not directly
implement a decision tree, but rely on the
nli_<lat_int_nr>/nli_<lat_int_group> functions.

The nli_<lat_int_nr>/nli_<lat_int_group> perform the analysis of the
lattice state. They take a site on the lattice and look at the
conditions of the elements of the corresponding lateral interaction
event group. Using this information, they return the index of the
process (within the lateral interaction group) which can currently be
executed. If none can, it returns 0.

A proclist/run_proc_<lat_int_group> routine first calls del_proc
for each lateral interaction event group which has a condition
(including bystanders) affected by the changes in the lattice. The
argument for del_proc will be the output of the corresponding
nli_* functions, which will figure out which of the events is
currently active (and can thus be deleted). After deleting processes,
the lattice is updated according to the actions of the lateral
interaction group. Once the new system state is set, add_proc is
called for the same processes that del_proc was called, again using
nli_* as argument. This way, the correct processes associated to the
new state of the lattice will be activated.

This method works because of a slight, but important, difference in
base/add_proc and base/del_proc between lat_int and
local_smart. In local_smart, calling one of these functions with
an argument proc=0 would lead to a program failure. In lat_int,
this leads to the functions simply not adding or deleting any process to
avail_sites.

A kmc step with the otf backend

[image: ../_images/step_otf.png]

A kMC step in with the otf backend. Subroutines are represented by labeled boxed, located inside the box corresponding to the calling function. Variables (scalar or arrays) are indicated by gray boxes. An arrow pointing to a variable indicates that a subroutine updates it (or defines it). An arrows pointing to a subroutine indicates that the routine uses the variable or the output of the function. The passing of information occurs both through subroutine arguments and through module-wide shared variables; this distinction is not present in the diagram.

As expected, the algorithm for running a kMC step with otf differs
considerably from local_smart and lat_int. Firstly, the update
of the accum_rates is more involved, as different copies of the
processes do not share a single rate constant. For this reason, it is
necessary to use the rates_matrix array, which contains the current
rate constants for all active events. The accum_rates array is
updated according to

[image: \text{\texttt{accum_rates(i)}} = \sum_{j=1}^{\text{\texttt{i}}} \sum_{k=1}^{ \texttt{nr_of_sites(j)}} \text{\texttt{rates_matrix(j, k)}}]

The computational time to perform this summation now scales as
[image: O \left(\texttt{nr_of_procs} \times \texttt{volume} \right)],
instead of the [image: O \left(\texttt{nr_of_procs}\right)] for
local_smart. Though this might seem like a disadvantage, it is
important to notice that the value of nr_of_procs in otf can be
smaller (potentially by several orders of magnitude) than in
local_smart, and thus otf can outperform local_small for
complex models (many lateral interactions) when using sufficiently small
simulation sizes (small volume).

Once accum_rates is evaluated, base/determine_procsite proceeds
to find the process index proc of the event to be executed. This is
achieved by performing a binary search on accum_rates, exactly like
in local_smart or lat_int. To select the site index, it is
first necessary to evaluate

[image: \texttt{accum_rates_proc}(i) = \sum_{k=1}^{ i} \text{\texttt{rates_matrix(proc, k)}},]

i.e. the partial sums of rates for the different events associated to
process proc. Then a second binary search can be performed on
accum_rates_proc to find s such that

[image: \texttt{accum_rates_proc(s -1)} \le \\ \texttt{ran_site * accum_rates_proc(nr_of_sites(proc))} \le \\ \texttt{accum_rates_proc(s)}.]

Therefore, s corresponds to the index of the selected site according to
the current order of the avail_sites(:, :, 1) array. The site index
as site = avail_sites(proc, s, 1).

The process of updating the lattice and the bookkeeping arrays is also
rather different. As in the other backends, first
proclist/run_proc_nr is called with proc and site as
arguments. Besides calling base/increment_procstat, it is
responsible for calling the adequate
run_proc_<proc_nr>/run_proc_<proc_name> routine. There is one of
such routine for each process and they play the same role as the put
and take routines in local_smart. The main difference is that
these routines are built for executing full processes instead of
elemental changes to individual sites. These functions need to look into
the state of lattice and determine:

	which events get one or more of their conditions unfulfilled by the executed event

	which events get one or more of their condition fulfilled by the executed event and also have all other conditions fulfilled

	which events are affected by a change in one of their bystanders

For events in (a), run_proc_<proc_nr>/run_proc_<proc_name> run
lattice/del_proc. For events in (b) and (c), rate constants are
needed. This is done using functions from proclist_pars module, as
described below. With the know rate constants,
run_proc_<proc_nr>/run_proc_<proc_name> calls lattice/add_proc
for each event in (b) and lattice/update_rates_matrix for each event
in (c). In otf, lattice/add_proc and base/add_proc take a
floating point argument for the rate constant in addition to the usual
site and proc arguments. More details on the structure of these
routines will be given in the section on the translation algorithm.

Rate constants are evaluated using the
proclist_params/gr_<proc_name>. These functions look at the current
state of the lattice to evaluate a integer array nr_vars which
encodes the number of the different types of interactions that are
present. This is used as input for the corresponding
proclist_pars/rate_<proc_name> which implements the user defined
rate expression. These can include user-defined parameters, which are
encoded in FORTRAN with the userpar array in the proclist_pars
module.

After proclist/run_proc_nr executes, the lattice,
avail_sites, nr_of_sites and rates_matrix are in sync again,
and the next kMC step can start with the evaluation of accum_rates.

The code generation routines

[image: ../_images/export_procedure.png]

Routines called during the export of a kmcos model

As most of the source code described in the previous sections is
generated automatically, it is crucial to also understand how this
works. Code generation are contained in the kmcos.io Python
submodule. The normal way to use this module is through the command
line, i.e. invoking the kmcos export command. The figure above shows the subroutines/functions which are called
when this is done. The command line call itself is handled by the
kmcos.cli submodule. Furthermore, the export procedure relies on the
classes from the kmcos.types submodule, which define the abstract
representation of the kMC model. Specifically, a model definition from
an xml or ini file into a kmcos.types.Project object. The
rest is done with the help of an instance of the
kmcos.io.ProcListWriter class, which contains several methods that
write source code. Specifically, Fortran source code is generated in one
of three ways:

	files are copied directly from kmcos’ installation

	code is generated with the help of a template file, which is
processed by the kmcos.io.ProcListWriter.write_template method

	code is written from scratch by one of the several
kmcos.io.ProcListWriter.write_proclist_* methods.

The format of the template files and how
kmcos.io.ProcListWriter.write_template works is explained in next
section. The kmcos.io.ProcListWriter.write_proclist method calls
several other methods in charge of building different parts of the
source code, these methods are named according to the pattern
kmcos.io.ProcListWriter.write_proclist_*. Exactly which of these
methods are called depends on the backend being used. Some of such
functions are specific to a certain backend, while other work for more
than one backend. This is detailed under The write_proclist method.

The source file template

Template files are located in the kmcos/fortran_src/ folder of the
kmcos’ source code and have the mpy extension. Each line of these
files contains either

	Python source code or

	template text prefixed with #@

kmcos.utils.evaluate_template processes these files to convert them
into valid python code. The Python lines are left unchanged, while the
template lines are replaced by code adding the content of the line (i.e.
things after the #@) to a string variable result. Template lines
can contain placeholders, included as a variable name enclosed in curly
brackets ({ and }). If those variable names are found within
the local variables of the corresponding
kmcos.utils.evaluate_templates call, the placeholders are replaced by
the variable values. The kmcos.utils.evaluate_template method accepts
arbitrary keyword
arguments [https://docs.python.org/2/tutorial/controlflow.html#keyword-arguments].
In addition, the kmcos.io.ProcListWriter.write_template is passed the
current instance of the ProcListWriter class as self, the loaded
kMC model information (i.e. the kmcos.types.Project) instance as
data and an options dictionary with additional settings as
options.

With such template files it is possible to include some programmatically
dependence on the model characteristics and other settings to an
otherwise mostly static file. For example, in the
proclist_constants.mpy template, the following text

for i, process in enumerate(self.data.process_list):
 ip1 = i + 1
 #@ integer(kind=iint), parameter, public :: {process.name} = {ip1}

is used to hard-coded the name constants used throughout the code to
reference a process’ index.

The write_proclist method

[image: ../_images/write_proclist.png]

Routines used to write proclist and associated modules for the different backends.

The scheme above shows the methods called by
kmcos.io.ProcListWriter.write_proclist to write proclist.f90 and,
for lat_int and otf, related files (proclist_constants.f90,
proclist_pars.f90, run_proc_*.f90, nli_*.f90). All these
kmcos.io.Proclist.write_proclist_* methods take an out argument
which is a file
object [https://docs.python.org/2/library/stdtypes.html#file-objects]
to which the code is to be written and most take a data argument
which is an instance of kmcos.types.Project containing the abstract
kMC model definition. Many of them also take a code_generator
keyword argument with the backend’s name. In what follows we briefly
describe each of the individual methods. For clarity, they have been
categorized according to the backend by which they are used. In cases in
which the same routine is called to more than one backend, the
description is presented only once.

Methods called to build local_smart source code

write_proclist_generic_part

This routine is only used by the local_smart backend. “Generic part”
refers to the auxiliary constants defined in proclist (which exist
in a separate file in lat_int and otf) and the functions whose
code does not depend on the process details (e.g.
proclist/do_kmc_steps).

write_proclist_constants

Uses the proclist_constants.mpy template to generate code defining
named constants for the indices of each process and each species on the
model. In local_smart this is added at the top of the
proclist.f90 file; in lat_int and otf this is included
separately as the proclist_constants.f90 file.

write_proclist_generic_subroutines

Uses the proclist_generic_subroutines.mpy template to write several
routines not directly related with the tree search of process update,
namely: do_kmc_steps, do_kmc_step, get_next_kmc_step,
get_occupation, init, initialize_state and (only for
otf) recalculate_rates_matrix.

write_proclist_run_proc_nr_smart

Writes the proclist/run_proc_nr function, which calls put and
take routines according to the process selected by
base/determine_procsite. This is basically a nested for-loop, first
over the processes and then over the actions of such process. The only
tricky part is to input correctly the relative coordinate for which the
take and put routines need to be called. This is done with the
help of the kmcos.types.Coord.radd_ff method.

write_proclist_put_take

This is the most complex part of the local_smart code generator, in
charge of writing a put and a take routine for each combination
of site type and species in the model (except for the default species).
These routines need to decide which events to activate or deactivate
given an specific change in the lattice state.

The write_proclist_put_take is organized as several nested for
loops. The outermost goes through each species in the model, the
following through each layer and site type, and the next through the two
possibilities, put and take. At this point, a specific
put_<species>_<layer>_<site> or take_<species>_<layer>_<site>
subroutine is being written.

For each of these routines, it is necessary to check which events
(located relative to the affected site) can potentially be activated or
deactivated by the operation being executed. This is done with further
nested loops, going through each process and then through each condition
of such process.

If a fulfilling match is found (i.e. the species and site type of the
condition matches the site and species of a put routine or there is
a condition associated to the default species on the site affected by a
take routine) a marker to the corresponding process is stored in
the enabled_procs list. This marker is a nested tuple with the
following structure:

	first a list of kmcos.types.ConditionAction objects (see below)

	then a tuple containing

	the name of the process

	the relative executing coordinate of the process with respect to
the matching condition

	a constant True value.

The list of ConditionAction objects contain an entry for each of the
conditions of the given process, except for the condition that
matched. The species are the same, but the coordinates of the these new
ConditionAction objects are relative to the the coordinate of the
matching condition. This way, we gain access to the position of the
conditions of the events that can potentially be activated by the
put or take routine relative to the position that is being
affected in the surface. Note that potentially more than one marker
could be added to the list for a given process. This would correspond to
the possibility of different events associated to the same process being
activated.

If an unfulfilling match is found, a tuple is added to the
disabled_procs list. This tuple contains

	the process object and

	the relative position of the process with respect to the matching
condition

There is less information in this case because the logic for disabling
processes is much simpler than that for enabling them.

Once these enabled_procs and disabled_procs lists have been
collected, a del_proc statement for each event in disabled_procs
is written. Finally, the routine needs to write the decision tree to
figure out which events to activate. This is done by the
kmcos.io.ProcListWriter._write_optimal_iftree method, which calls
itself recursively to build an optimized select-case tree.

_write_optimal_iftree expects an object with the same structure as
the enabled_procs list as input. This is called items in the
method’s body. At the start, each entry of the list corresponds to an
event that potentially needs to be activated. Associated to each of
those, there is a list of all conditions missing for this events to be
activated. If in the initial call to _write_optimal_iftree one of
the events has no missing conditions (i.e. the corresponding list is
empty), this means that their only condition was whatever the put or
take routine provided. Consequently, the first step this method
takes is to write a call to add_proc for those events (if any). Such
events are then be removed from the items list.

Next the procedure that heuristically optimizes the if-tree starts. From
items, it is possible to obtain the most frequent coordinate, i.e.
that which appears most often within the lists of missing conditions.
Such coordinate is selected to be queried first in the select-case
tree. The possible cases correspond to the different possible species
adsorbed at this coordinate. The routine iterates through those. For
each species, it writes first the case statement. Then, the
processes in items whose condition in the most frequent coordinate
matches the current species are added to a reduced items list called
nested_items. Next, the condition in the most frequent coordinate
will be removed from the nested_items, creating the pruned_items
list. This reduced list is used as input for a successive call to
_write_optimal_iftree. The events that where included in
nested_items are then removed from the items list.

It is possible (likely) that not all events will be have conditions in
the most frequent coordinate. If this is the case,
_write_optimal_iftree need to be called again to start an additional
top-level case-tree to explore those processes.

In this way, further calls are made to _write_optimal_iftree, each
of which in which the items list is shorter, of the item themselves
contain fewer conditions. These calls “branch out”, but each branch
eventually leads to calls with empty items list, which closes the
corresponding branch. The decision tree finishes writing when all
elements of enabled_procs have been exhausted.

write_proclist_touchup

This routine is in charge of writing the
proclist/touchup_<layer>_<site>, one for each site type. These
routines update the state of the lattice, one site at a time.

They first delete all possible events with executing coordinate in the
current site. Then, they collect a list of all processes with executing
coordinate matching the current site type. The list is built with the
same structure as the enabled_procs list described in section (see
here). This is then fed to the
_write_optimal_subtree method, to build a decision tree that can
decide which of those process are to be turned-on given the current
state of the lattice.

TODO write_proclist_multilattice

write_proclist_end

This simply closes the proclist module with end module proclist.

Methods called to build lat_int source code

write_proclist_lat_int

This writes the header of the proclist.f90 file for lat_int and
then calls several write_proclist_lat_int_* functions in charge of
writing the different routines of the module. Before it can do this, it
needs to call _get_lat_int_groups, a method that finds all lateral
interaction groups and returns them as a dictionary. This dictionary has
the names of the groups as keys and the corresponding lists of processes
as values. The name of a group is the name of the process within it with
the lowest index (this coincides with the first process in the group
when sorted alphabetically).

write_proclist_lat_int_run_proc_nr

This functions is similar to its local_smart counterpart (see
here). The only difference
is that this routine needs to decide between lateral interaction groups
instead of individual processes, as selecting the individual process
within the group is done by the nli_* subroutines. For this reason,
the indices of all processes of a group are included inside the
case(...) statements.

write_proclist_lat_int_touchup

Writing the touchup functions is much simpler here than in
local_smart, as here we can rely on the nli_* functions (see
here). As in local_smart, all processes are deleted
(just in case they were activated). Then add_proc is called for each
lateral interaction group, using the result of the corresponding
nli_<lat_int_group> function as input. Thus, an event will be added
only if that function returns non-zero.

write_proclist_lat_int_run_proc

This method writes a run_proc_<lat_int_nr> module for each lateral
interaction group. Each of these modules is located in its own file. The
first step for writing the modules consists of finding all lateral
interaction event groups which are affected by the actions of the
current lateral interaction group. These are included in the list
modified_procs. Once the list is built, a del_proc call is
written for each of them, using the results of the corresponding
nli_<lat_int_group> as argument. Then, it writes calls to
replace_species to update the lattice. Finally a call to
add_proc is added for each element of modified_procs, using the
corresponding nli_<lat_int_group> as argument.

write_proclist_lat_int_nli_casetree

This method writes the nli_* routines, which decide which, if any,
of the processes in a lateral interaction group can be executed in a
given site of the lattice. For this, the method builds a nested
dictionary, case_tree, which encodes the decision tree. This is then
translated into a select-case Fortran block by the
kmcos.io._casetree_dict function.

Methods called to build otf source code

write_proclist_pars_otf

This method is only used by the otf backend. It is in charge of
writing the proclist_pars.f90 file. This module has two main roles:
the first is to provide access to the user-defined parameters and other
physical parameters and constants at the Fortran level. The second, to
provide the routines which evaluate the rate constants during execution.

The routine first writes the declaration of the userpar array, used
to store the value of the user-defined parameters. In addition,
auxiliary integer constants (named as the parameters in the model) are
declared to help with the indexing of this array. The
_otf_get_auxiliary_params method is used to collect lists of
constants, including the definitions of physical units, atomic masses
and chemical potentials used in the rate expressions in the model. The
constants and atomic masses are declared as constants with their
corresponding value (evaluated using kmcos.evaluate_rate_expression).
If needed, a chempot array is included, which is used to store the
value of the chemical potentials used in the model (auxiliary indexing
variables are also included for this array).

In addition, this method writes a routine to update userpar from the
Python interface, and another to read the values of such array. If
needed, a routine to update chempots is also added.

In addition, this routine writes the functions used to evaluate the rate
constants during execution. For each process, a gr_<process_name>
and a rate_<process_name> are written. gr_<process_name> loops
through all the bystanders to count how many neighbors of a given
species there is for each “flag” associated to the process (see as
determined by its
bystanders [http://kmcos.readthedocs.io/en/latest/topic_guides/otf_backend.html]).
These counts are accumulated in the nr_vars array. This array is
used as input to the corresponding rate_<process_name> routine. The
content of this routine is directly obtained from the otf_rate
attribute of the the kmcos.types.Process object. This user-defined
string is processed by the _parse_otf_rate method to replace the
standard parameter and constant names with the names understood by this
Fortran module.

write_proclist_touchup_otf

This method writes the subroutines used to initialize the state of the
bookkeeping arrays at the start of a simulation. For this, it calls the
_write_optimal_iftree_otf with all possible events associated to the
current site (i.e. with all processes). The routine
_write_optimal_iftree_otf is very similar to the
_write_optimal_iftree routine described used by local_smart’s write_proclist_run_proc_nr_smart (see here).
The most remarkable difference is that in otf the add_proc routine
needs to be called with the result of a gr_<proc_name> routine as an
argument (to evaluate the current value of the event’s rate constant).

write_proclist_run_proc_nr_otf

The subroutine written by this method is very similar to its counterpart
in the lat_int backend, only needing to decide which specific
run_proc_<procname> function to call.

write_proclist_run_proc_name_otf

The run_proc_<proc_name> routines are the ones in charge of updating
the bookkeeping arrays once a given event has been selected for
execution. They are similar to their counterpart in lat_int in that
there is one for each lateral interaction group. In otf there is
only one process per “lateral interaction group”, so there is one such
routine per process. They are also similar to the put_* and
take_* subroutines from local_smart because they use very
similar logic to build the hardcoded decision trees. The main difference
between these backends is that the run_proc_<proc_name> routines of
otf implement decision trees that take into account the changes in
all sites affected by a process, while in local_smart put_* and
take_* routines consider only an elementary change to a single site.

The first thing that write_proclist_run_proc_name_otf does is to
collect a list with all the events for which one of the actions of the
executing process unfulfills a condition (inh_procs), a list with
all the processes for which they fulfill a condition (enh_procs) and
a list with all the processes for which they modify the state of one of
the bystanders (aff_procs). The processes that are included in
inh_procs list are excluded from the other two lists.

Once this is done, calls to del_proc are written for all processes
in inh_procs. Then, calls to the replace_species subroutine are
added, so as to update the lattice according to the actions of the
executing process. Afterwards, the subroutine update_rates_matrix is
called for each process in aff_procs to update the corresponding
rate constant.

As in the case of local_smart the most complex operation is that of
activating processes, as the state of the lattice needs to be queried
efficiently. To do this, a new list, enabling_items, is built based
on the enh_procs list. enabling_items contains an entry for each
process in enh_process. These entries are tuples containing:

	a list of conditions which are not satisfied by the executing event

	a tuple containing:

	the name of the process

	the relative position of the process with respect to the
coordinate of the executing process

	a constant True value.

This list is analogous to the enabled_procs list used by the
write_proclist_put_take routine of the local_smart backend (see
here). This list is used as input for
the _write_optimal_iftree_otf method. This is very similar to the
_write_optimal_iftree, with the only difference that calls to
add_proc also need to include the result of the gr_<proc_name>
functions as arguments.

Reference

Model running commands

Typical usage: model.[command]

Source code in: https://github.com/kmcos/kmcos/blob/master/kmcos/run/__init__.py

	
class kmcos.run.KMC_Model(image_queue=None, parameter_queue=None, signal_queue=None, size=None, system_name='kmc_model', banner=True, print_rates=False, autosend=True, steps_per_frame=50000, random_seed=None, cache_file=None, buffer_parameter=None, threshold_parameter=None, sampling_steps=None, execution_steps=None, save_limit=None)

	API Front-end to initialize and run a kMC model using python bindings.
Depending on the constructor call the model can be run either via directory
calls or in a separate processes access via multiprocessing.Queues.
Only one model instance can exist simultaneously per process.

	
_adjust_database()

	Set the database of processes currently
possible according to the current configuration.

	
_get_configuration()

	Return current configuration of model.

	Return type

	np.array

	
_put(site, new_species, reduce=False)

	Works exactly like put, but without updating the database of
available processes. This is faster for when one does a lot updates
at once, however one must call _adjust_database afterwards.

Examples

below puts a CO molecule at the `bridge` site of the lower left unit cell
model._put([0,0,0,model.lattice.bridge], model.proclist.co)
below does the same:
model._put([0,0,0,"bridge"], "CO")

model._put([1,0,0,model.lattice.bridge], model.proclist.co)
below puts a CO molecule at the `bridge` site one to the right

model._adjust_database() # Important !

	Parameters

	
	site (list or np.array) – Site where to put the new species, i.e. [x, y, z, bridge]

	new_species (str) – Name of new species.

	reduce (bool) – Of periodic boundary conditions if site falls out
site lattice (Default: False)

	To see all the available site names, use model.settings.site_names, which come from kmc_settings.

	Ex: site_names = [‘simple_cubic_hollow’]
set site name as ‘model.lattice.simple_cubic_hollow’

Ex: site_names = [‘ruo2_bridge’]
set site name as ‘model.lattice.ruo2_bridge’

	To see all the available species names, one can use model.settings.species_tags which comes from kmc_settings.py.

	
	Ex: species_tags = {

	“CO”:,
“O”:,
“empty”:,
}

	
_set_configuration(config)

	Set the current lattice configuration.

Expects a 4-dimensional array, with dimensions [X, Y, Z, N]
where X, Y, Z are the lattice size and N the number of
sites in each unit cell.

	Parameters

	config (np.array) – Configuration to set for model. Shape of array
has to match with model size.

	
create_configuration_plot(directory='./exported_configurations', plot_settings={}, showFigure=False, exportFigure=True, dimensionality=2)

	Returns the spatial view of the kmc_model and make a graph named ‘plottedConfiguration.png,’ unless specified by ‘figure_name’ in plot_settings

	‘coords’ is expected to be the results from get_species_coordinates(config, species, meshgrid = ‘cartesian’)

	
	Ex: [[0 10 0] [0 11 0] [0 18 0] [1 6 0] [2 3 0] [2 11 0] [2 13 0]] -> This is CO positions in [x y z]

	[[0 0 0] [0 1 0] [0 2 0] [0 3 0] [0 4 0] [0 5 0] [0 6 0]] -> This is empty site positions in [x y z]

‘directory’ sets the directory name where the plot is saved

	‘plot_settings’ is a dictionary that allows for the plot to change given the arguements

	
	EX:

	“y_label”: “test”,
“x_label”: “test”,
“legendLabel”: “Species”,
“legendExport”: False,
“legend”: True,
“figure_name”: “Plot”,
“dpi”: 220,
“speciesName”: False

‘dimensionality’ is an integer (either 2 or 3 dimensional) for the number of cartesian dimensions.

	
deallocate()

	Deallocate all arrays that are allocated
by the Fortran module. This needs to be called
whenever more than one simulation is started
from one process.

Note that the currenty state and history of
the system is lost after calling this method.

Note: explicit invocation was chosen over the
__del__ method because there seems to easy
portable way to control garbage collection.

	
do_acc_steps(n=10000, stats=True, save_exe=False, save_proc=0)

	Propagate the model n steps using the temporal
acceleration scheme.

	Parameters

	
	n (int) – Number of steps to run (Default: 10000)

	stats (logical) – Calculate statistics for the scaling factors

	save_exe (logical) – Track ‘save_limit’ number of executions following the execution of the target process ‘save_proc’

	save_proc (integer) – Process to be tracked

	
do_steps(n=10000, progress=False)

	Propagate the model n steps.

	Parameters

	n (int) – Number of steps to run (Default: 10000)

	
do_steps_time(t=1.0, n=10000)

	Propagate the model t s, or n steps (whichever is achieved first.
The n steps are intended to act as an upper limit to avoid infnite steps
as well as for any other reason that the user may wish to limit the number of steps.

	Parameters

	
	t (real) – Length of time (s) to run (Default: 1)

	n (int) – Upper limit for number of steps to run (Default: 10000)

Returns the number of iterations executed.

	
double()

	Double the size of the model in each direction and initialize
larger model with current configuration in each copy.

	
dump_config(filename, directory='./exported_configurations')

	Use numpy mechanism to store current configuration in a file.

	Parameters

	filename (str) – Name of file, to write configuration to.

	
export_movie(filename='', directory='./exported_movies', resolution=150, scale=20, fps=1, frames=30, steps=1000000.0, representation='atomic', stitch=True)

	Exports a series of atomic view snapshots of model instance to a subdirectory, creating png files
in the exported_movie_images directory and then creates a .webm video file of all the images
of the images into a video

‘filename’ sets the filename for the images in the image directory and the video
‘scale’ increases the size of each species in the structure (currently not working as desired)
‘resolution’ changes the dpi of the images (currently not working as desired)
‘fps’ sets how long each image will stay in the video
‘frames’ sets the total video length
‘steps’ is the amount of steps the model does between each image

	
export_picture(resolution=150, scale=20, filename='', **kwargs)

	Gets the atoms objects of the kmc_model and returns a atomic view of the configuration and make a file named ‘atomic_view.png’ unless specified by ‘filename’ in the function’s argument

‘filename’ sets the filename for the images in the image directory and the video

‘scale’ increases the size of each species in the structure (currently not working as desired)

‘resolution’ changes the dpi of the images (currently not working as desired)

	
get_atoms(geometry=True, tag=None, reset_time_overrun=False)

	Return an ASE Atoms object with additional
information such as coverage and Turn-over-frequencies
attached.

	The additional attributes are:

	
	info (extra tags assigned to species)

	kmc_step

	kmc_time

	occupation

	procstat

	integ_rates

	tof_data

	tof_data contains previously defined TOFs in reaction per seconds per

	cell sampled since the last call to get_atoms()

	info can be used to better visualize similar looking molecule during

	post-processing

	procstat holds the number of times each process was executed since

	last get_atoms() call.

	Parameters

	geometry (bool) – Return ASE object of current configuration
(Default: True).

	
get_avail(arg)

	Return available (enabled) processes or sites. If the argument is a sequence it is interpreted as a site (x, y, z, n).
If it is an integer it is interpreted as a process.

	param arg

	type or process to query

	type arg

	int or [int]

	
get_backend()

	Return name of backend that model was compiled with.

	Return type

	str

	
get_global_configuration(filename_csv='', directory='./exported_configurations', export_csv=True, matrix_format='cartesian')

	Gets each species and their respective coordinates and returns a 3d list that separates the coordinates of each species and EITHER returns a dictionary of the species’s name OR returns a meshgrid of all the species

‘filename_csv’ sets the name of the csv file that will be exported if ‘export_csv’ is true

‘directory’ sets the directory name where the .csv file is saved if ‘export_csv’ is true

‘export_csv’ determines whether the functions exports the species coordinates as a csv file

‘matrix_format’ has two types of options: meshgrid and cartesian. Cartesian return as a csv with (x,y,z) format, and the meshgrid format
returns as a csv with a XX, YY format

EX: Cartesian
Species Coordinates
CO [0,2,0]
CO [0,4,0]
CO [0,5,0]
empty [0,0,0]
empty [0,1,0]
empty [0,3,0]

EX: Meshgrid
[[0, 1, 1, 0, 1, 0],
[1, 1, 1, 0, 1, 0],
[0, 1, 1, 0, 1, 0],
[1, 1, 0, 0, 1, 0],
[1, 0, 1, 1, 1, 0],
[1, 0, 1, 0, 1, 0]]

Note 1: For this case, “0” is empty and “1” is CO. In general, the meshgrid can have higher numbers representing more than 2 species if htere are
enough spaces in the model.

Note 2: The return value for get_global_configuration() and get_species_coordinates() have the same return values when setting matrix_format = ‘meshgrid’

	
get_local_configurations(configurationArray, radius=2, filename='', directory='./exported_configurations', export_files=True, unique_only=True, delimiter='|')

	Takes in a meshgrid or _config object (from _get_configuration) and returns either the list of either all possible smaller meshgrids (i.e. the local configurations), or only the unique local configurations
Currently, get_local_configurations is only compatible with 2D configurations.

	‘meshgrid’ is a matrix with all the species

	
	EX: Meshgrid

	[[0, 1, 1, 0, 1, 0],
[1, 1, 1, 0, 1, 0],
[0, 1, 1, 0, 1, 0],
[1, 1, 0, 0, 1, 0],
[1, 0, 1, 1, 1, 0],
[1, 0, 1, 0, 1, 0]]

Meshgrid can be obtained by called self.get_global_configuration(matrix_format=’meshgrid’)

	‘radius’ is the distance from the central species to the adjacent species

	EX: Radius = 1
[[0, 1, 1,],
[1, 1, 1,], –> This is one of the local configurations of the meshgrid
[0, 1, 1,]]

‘filename’ sets the filename for the array of local configurations as a .npy file

‘directory’ sets the directory name where the .npy file is saved

‘export_file’ is the argument that determines if the function will export the return value as a .npy file

‘unique_only’ is the argument that determines if the function returns all possible local configurations or the unique local configurations

	Example of the function’s return value

	EX:
[[[0, 1, 1,],
[1, 0, 1,],
[0, 0, 1,]],

[[0, 1, 1,],
[1, 1, 1,],
[0, 1, 1,]],

[[1, 1, 1,],
[1, 0, 0,],
[0, 1, 1,]]]

Note that if a config object is passed in, rather than a meshgrid, then each element is a list rather than an integer.
For example, the first row might be [[[0,1,0], [1,1,0] ….],
However, the function will still work. So one can use model._get_configuration() and pass the output of that into get_local_configurations.
A config object from model._get_configuration() should not be confused with a global configuration from model.get_global_configuration(),
they are two representations of the global configuration but are very different in format.

#TODO: We should have an optional argument for the
configurationArrayFormat which can be “meshgrid” versus “_config” since _config is really an internal format. Then we can use the flag and the “try and except” will be a last resort in an else statement.

	
get_next_kmc_step()

	Returns the next kmc step’s process and which site it would occur on, without taking the step.
The output looks like this:

(Process model.proclist.o2_adsorption_bridge_right (13), Site (10, 19, 0, 1) [#781])

The process name and process number are shown.

For the site,the format is the unit cell position in cartesian x,y,z followed by the site type’s index (in this example, it is 1).
As noted in the “_put()” function, the site type indexing starts at 1 (not at zero).
One can use model.settings.site_names to see the site names, which come from kmc_settings.
So a value of (10, 19, 0, 1) would mean unit cell 10,19,0 with site type model.settings.site_names[0] due to the different indexing.

	
get_occupation_header()

	Return the names of the fields returned by
self.get_atoms().occupation.
Useful for the header line of an ASCII output.

	
get_param_header()

	Return the names of field return by
self.get_atoms().params.
Useful for the header line of an ASCII output.

	
get_species_coordinates(filename_csv='', directory='./exported_configurations', export_csv=True, matrix_format='cartesian')

	Gets the species coordinates from config and EITHER returns a 3d array, where each sub array lists the coordinates for a single species on the surface OR returns a meshgrid of all the species

‘filename_csv’ sets the filename for the functions return value as a .csv file if ‘export_csv’ is true

‘directory’ sets the directory name where the .csv file is saved if ‘export_csv’ is true

‘matrix_format’ has two types of options: meshgrid and cartesian. Cartesian return as a csv where each row
represents the coordinates for a single species, and the meshgrid format returns as a csv with a XX, YY format

EX: Cartesian
Ex: [[0 10 0] [0 11 0] [0 18 0] [1 6 0] [2 3 0] [2 11 0] [2 13 0]] -> This is CO positions in [x y z]

[[0 0 0] [0 1 0] [0 2 0] [0 3 0] [0 4 0] [0 5 0] [0 6 0]] -> This is empty site positions in [x y z]

EX: Meshgrid
[[0, 1, 1, 0, 1, 0],
[1, 1, 1, 0, 1, 0],
[0, 1, 1, 0, 1, 0],
[1, 1, 0, 0, 1, 0],
[1, 0, 1, 1, 1, 0],
[1, 0, 1, 0, 1, 0]]

Note 1: For this case, “0” is empty and “1” is CO. In general, the meshgrid can have higher numbers representing more than 2 species if there are
enough spaces in the model.

Note 2: The return value for get_global_configuration() and get_species_coordinates() have the same return values when setting matrix_format = ‘meshgrid’

	
get_std_sampled_data(samples, sample_size, tof_method='integ', output='str', show_progress=False)

	Sample an average model and return TOFs and coverages
in a standardized format :

[parameters] [TOFs] [occupations] kmc_time kmc_step

Parameter tof_method allows to switch between two different methods for
evaluating turn-over-frequencies. The default method procstat evaluates
the procstat counter, i.e. simply the number of executed events in the
simulated time interval. integ will evaluate the number of times the
reaction could be evaluated in the simulated time interval
based on the local configurations and the rate constant.

Credit for this latter method has to be given to Sebastian Matera for
the idea and implementation.

In each case check carefully that the observable is sampled good enough!

	Parameters

	
	samples – Number of batches to average coverages over.

	sample_size (int) – Number of kMC steps in total.

	tof_method (str) – Method of how to sample TOFs.
Possible values are procrates or integ.
While procrates only counts the processes actually executed,
integ evaluates the configuration to estimate the actual
rates. The latter can be several orders more efficient
for very slow processes.
Differences resulting from the two methods can be used
as on estimate for the statistical error in samples.

	
get_tof_header()

	Return the names of the fields returned by
self.get_atoms().tof_data.
Useful for the header line of an ASCII output.

	
halve()

	Halve the size of the model and initialize each site in the new model
with a species randomly drawn from the sites that are reduced onto
one. It is necessary that the simulation size is even.

	
load_config(filename, directory='./exported_configurations')

	Use numpy mechanism to load configuration from a file. User
must ensure that size of stored configuration is correct.

	Parameters

	filename (str) – Name of file, to write configuration to.

	
nr2site(n)

	Accepts a site index and return the site in human readable
coordinates.

	Parameters

	n (int) – Index of site.

	Return type

	str

	
peek(*args, **kwargs)

	Creates a static image of the model in a popup window.

	
play_ascii_movie(frames=30, steps=1, site=0, delay=0.1, species=None, hexagonal=False)

	Shows a series of model snapshots in the current terminal.
‘frames’ sets the total video length
‘steps’ is the number of steps the model does between each image
‘site’ is the site of interest to animate
‘species’ is a list of species to display (default is all species)

	
plot_configuration(filename='', directory='./exported_configurations', resolution=150, scale=20, representation='spatial', plot_settings={}, showFigure=False, exportFigure=True)

	Either calls create_configuration_plot() to create the spatial representation of the model, or calls export_picture() to create the atomic representation of the model

‘filename’ sets the filename for the plot

‘directory’ sets the directory name where the plot is saved

‘scale’ increases the size of each species in the structure (currently not working as desired)

	‘resolution’ changes the dpi of the images (currently not working as desired)

	Note: ‘resolution’ and ‘scale’ are strictly for the atomic view

‘representation’ is an optional argument for spatial and atomic view
You should specify as ‘atomic’ to see the atomic view. Leaving representation empty returns spatial view by default.

‘plot_settings’ is a dictionary that allows for the plot to change given the arguements
EX:

“y_label”: “test”,
“x_label”: “test”,
“legendLabel”: “Species”,
“legendExport”: False,
“legend”: True,
“figure_name”: “Plot”,
“dpi”: 220,
“speciesName”: False

	
post_mortem(steps=None, propagate=False, err_code=None)

	Accepts an integer and generates a post-mortem report
by running that many steps and returning which process
would be executed next without executing it.

	Parameters

	
	steps (int) – Number of steps to run before exit occurs
(Default: None).

	propagate (bool) – Run this one more step, where error occurs
(Default: False).

	err_code (str) – Error code generated by backend if
project.meta.debug > 0 at compile time.

	
print_accum_rate_summation(order='-rate', to_stdout=True)

	Shows rate individual processes contribute to the total rate

The optional argument order can be one of: name, rate, rate_constant,
nrofsites. You precede each keyword with a ‘-’, to show in decreasing
order.
Default: ‘-rate’. Possible values are rate, rate_constant, name, nrofsites .

	
print_adjustable_parameters(match=None, to_stdout=True)

	Print those methods that are adjustable via the GUI.

	Parameters

	pattern (str) – fname pattern to limit the parameters.

	
print_coverages(to_stdout=True)

	Show coverages (per unit cell) for each species
and site type for current configurations.

	
print_kmc_state(to_stdout=True)

	Shows current kmc step and kmc time.

	
procstat_normalized(match=None)

	Print an overview view process names along with
the number of times it has been executed divided by
the current rate constant times the kmc time.

Can help to find those processes which are kinetically
hindered.

	Parameters

	match (str) – fname pattern to filter matching parameter name.

	
procstat_pprint(match=None)

	Print an overview view process names along with
the number of times it has been executed.

	Parameters

	match (str) – fname pattern to filter matching parameter name.

	
put(site, new_species, reduce=False)

	Puts new_species at site. The site is given by 4-entry sequence
like [x, y, z, n], where the first 3 entries define the unit cell
from 0 to the number of unit cells in the respective direction.
And n specifies the site within the unit cell.

The database of available processes will be updated automatically.
For doing many put and a single update, see the _put() function.

Examples

below puts a CO molecule at the `bridge` site of the lower left unit cell
model.put([0,0,0,model.lattice.bridge], model.proclist.co)
below does the same:
model.put([0,0,0,"bridge"], "CO")

model.put([1,0,0,model.lattice.bridge], model.proclist.co)
below puts a CO molecule at the `bridge` site one to the right

	Parameters

	
	site (list or np.array) – Site where to put the new species, i.e. [x, y, z, bridge]

	new_species (str) – Name of new species.

	reduce (bool) – Of periodic boundary conditions if site falls out site
lattice (Default: False)

	To see all the available site names, use model.settings.site_names, which come from kmc_settings.

	Ex: site_names = [‘simple_cubic_hollow’]
set site name as ‘model.lattice.simple_cubic_hollow’

Ex: site_names = [‘ruo2_bridge’]
set site name as ‘model.lattice.ruo2_bridge’

	To see all the available species names, one can use model.settings.species_tags which comes from kmc_settings.py.

	
	Ex: species_tags = {

	“CO”:,
“O”:,
“empty”:,
}

	
run()

	Runs the model indefinitely. To control the
simulations, model must have been initialized
with proper Queues.

	
show()

	Creates a static image of the model in a popup window (this is a duplicate command of ‘peek’ created for convenience).

	
show_ascii_picture(site, species, hexagonal=False)

	Shows an ascii picture of the current configuration.

	
start()

	Start child process

	
view(scaleA=None)

	Start current model in live view mode.

	
xml()

	Returns the XML representation that this model was created from.

	Return type

	str

	
class kmcos.run.Model_Rate_Constants

	Holds all rate constants currently associated with the model.
To inspect the expression and current settings of it you can just
call it as a function with a (glob) pattern that matches
the desired processes, e.g.

model.rate_constant('*ads*')

could print all rate constants for adsorption. Given of course that
‘ads’ is part of the process name. The just get the rate constant
for one specific process you can use

model.rate_constant.by_name("<process name>")

To set rate constants manually use

model.rate_constants.set("<pattern>", <rate-constant (expr.)>)

	
__call__(pattern=None, interactive=False, model=None)

	Return rate constants.

	Parameters

	
	pattern (str) – fname pattern to filter matching parameter name.

	model (kmcos Model) – runtime instance of kMC to extract rate constants from (optional)

	
by_name(proc)

	Return rate constant currently set for proc

	Parameters

	proc (str) – Name of process.

	
inverse(interactive=False)

	Return inverse list of rate constants.

	
class kmcos.run.Model_Parameters(print_rates=True)

	Holds all user defined parameters of a model in
concise form. All user defined parameters can be
accessed and set as attributes, like so

model.parameters.<parameter> = X.Y

	
__call__(match=None, interactive=False)

	Return parameters that match `pattern’

	Parameters

	match (str) – fname pattern to filter matching parameter name.

Connected Variables

The connected_variables dictionary allows a person to pass string-writable objects
created during the model building into the runtime environment. This can be useful if
a person needs access to some data structures (like lists of surrounding sites) during runtime.
Dictionaries, strings, and lists can be passed. For more complex variables,
one could pass the name of a pickle file.
This feature is used for the surroundingSitesDict.

The basic syntax in a build_file would be as follows:

kmc_model = kmcos.create_kmc_model(model_name)
kmc_model.connected_variables['frog_list'] = [1,2,3,4]

Then, during runtime, one could do the following:

print(model.connected_variables['frog_list'])

Additional Information for developers. Currently (Dec 2022), the way kmcos processes things from the build file to the Runtime environment is as follows:

A person’s build file makes a Project class object (typically “kmc_model”), for example in https://github.com/kmcos/kmcos/blob/master/examples/MyFirstDiffusion__build.py
That build file makes an xml file (or ini file), which occurs in types.py _get_etree_xml or _get_etree_ini where a string is made that then gets written to file.
That xml/ini is then read back in and validated , which occurs against a DTD. A new Project class object is made from what is read back in.
It is important to recognize that the new Project class object has many attributes that are the same as the one in the build file, but it is not the same object. It has fewer of the original attributes due to hardcoded mapping during xml writing and xml reading.
When the source code compilation occurs, kmc_settings. is made. What is in kmc_settings roughly mirrors the original Project class object, but it is actually from the new Project class object that has been created from the xml.

Data Types

kmcos.types

Holds all the data models used in kmcos.

	
class kmcos.types.Project(model_name=None)

	A Project is where (almost) everything comes together.
A Project holds all other elements needed to describe one
kMC Project ready to be manipulated, exported, or imported.

The Project class is primarily used in build files.

The overall structure is the following and was also displayed
in the editor GUI (but that GUI is deprecated as of 2022).

Project:

- Meta
- Parameters
- Lattice(s)
- Species
- Processes

	
add_layer(*layers, **kwargs)

	Add a layer to the project. A Layer,
or keywords that are passed to the Layer
constructor are accepted.

	Parameters

	
	layers (list) – List of layers.

	cell (np.array (3x3)) – Size of unit-cell.

	default_layer (str.) – name of default layer.

	
add_parameter(*parameters, **kwargs)

	Add a parameter to the project. A Parameter,
or keywords that are passed to the Parameter
constructor are accepted.

	Parameters

	
	name (str) – The name of the parameter.

	value (float) – Default value of parameter.

	adjustable (bool) – Create controller in GUI.

	min (float) – Minimum value for controller.

	max (float) – Maximum value for controller.

	scale (str) – Controller scale: ‘log’ or ‘lin’

	
add_process(*processes, **kwargs)

	Add a process to the project. A Process,
or keywords that are passed to the Process
constructor are accepted.

	Parameters

	
	name (str) – Name of process.

	rate_constant (str) – Expression for rate constant.

	condition_list (list.) – List of conditions (class Condition).

	action_list (list.) – List of conditions (class Action).

	enabled (bool.) – Switch this process on or of.

	chemical_expression (str.) – Chemical expression (i.e: A@site1 + B@site2 -> empty@site1 + AB@site2) to generate process from.

	tof_count (dict.) – Stoichiometric factor for observable products {‘NH3’: 1, ‘H2O(gas)’: 2}. Hint: avoid space in keys.

	
add_site(**kwargs)

	Add a site to the project. The
arguments are

add_site(layer_name, site)

	Parameters

	
	name (str) – Name of layer to add the site to.

	site (Site) – Site instance to add.

	
add_species(*speciess, **kwargs)

	Add a species to the project. A Species,
or keywords that are passed to the Species
constructor are accepted.

	Parameters

	
	name (str) – Name of species.

	color (str) – Color of species in editor GUI (#ffffff hex-type specification).

	representation (str) – ase.atoms.Atoms constructor describing species geometry.

	tags (str) – Tags of species (space separated string).

	
get_parameters(pattern=None)

	Return list of parameters in Project.

	Parameters

	pattern (str) – Pattern to fnmatch name of parameter against.

	
get_processes(pattern=None)

	Return list of processes.

	Parameters

	pattern (str) – Pattern to fnmatch name of process against.

	
get_speciess(pattern=None)

	Return list of species in Project.

	Parameters

	pattern (str) – Pattern to fnmatch name of process against.

	
import_xml_file(filename)

	Takes a filename, validates the content against kmc_project.dtd
and import all fields into the current project tree

	
parse_and_add_process(string)

	Generate and add processes using a shorthand notation like, e.g. ::
process_name; species1A@coord1 + species2A@coord2 + … -> species1B@coord1 + species2A@coord2 + …; rate_constant_expression

.

	Parameters

	string (str) – shorthand notation for process

	
parse_process(string)

	Generate processes using a shorthand notation like, e.g. ::
process_name; species1A@coord1 + species2A@coord2 + … -> species1B@coord1 + species2A@coord2 + …; rate_constant_expression

.

	Parameters

	string (str) – shorthand notation for process

	
validate_model()

	Run various consistency and completeness
test of the model to make sure we have a
minimally complete model.

	
class kmcos.types.Meta(*args, **kwargs)

	Class holding the meta-information about the kMC project

	
class kmcos.types.Parameter(**kwargs)

	A parameter that can be used in a rate constant expression
and defined via some init file.

	Parameters

	
	name (str) – The name of the parameter.

	adjustable (bool) – Create controller in GUI.

	min (float) – Minimum value for controller.

	max (float) – Maximum value for controller.

	scale (str) – Controller scale: ‘log’ or ‘lin’

	
class kmcos.types.LayerList(**kwargs)

	A list of layers

	Parameters

	
	cell (np.array (3x3)) – Size of unit-cell.

	default_layer (str.) – name of default layer.

	
generate_coord(terms)

	Expecting something of the form site_name.offset.layer
and return a Coord object

	
generate_coord_set(size=[1, 1, 1], layer_name='default', site_name=None)

	Generates a set of coordinates around unit cell of any
desired size. By default it includes exactly all sites in
the unit cell. By setting size=[2,1,1] one gets an additional
set in the positive and negative x-direction.

	
class kmcos.types.Layer(**kwargs)

	Represents one layer in a possibly multi-layer geometry.

	Parameters

	
	name (str) – Name of layer.

	sites (list) – Sites associated with this layer (Default: [])

	
class kmcos.types.Site(**kwargs)

	Represents one lattice site.

	Parameters

	
	name (str) – Name of site.

	pos (np.array or str) – Position within unit cell.

	tags (str) – Tags for this site (space separated).

	default_species (str) – Initial population for this site.

	
class kmcos.types.Species(**kwargs)

	Class that represent a species such as oxygen, empty, … .
Note: empty is treated just like a species.

	Parameters

	
	name (str) – Name of species.

	color (str) – Color of species in editor GUI (#ffffff hex-type specification).

	representation (str) – ase.atoms.Atoms constructor describing species geometry.

	tags (str) – Tags of species (space separated string).

	
class kmcos.types.Process(**kwargs)

	One process in a kMC process list

	Parameters

	
	name (str) – Name of process.

	rate_constant (str) – Expression for rate constant.

	otf_rate (str) – Expression used to calculate rate on the fly using bystander’s configuration, otf backend only!.

	condition_list (list.) – List of conditions (class Condition).

	action_list (list.) – List of conditions (class Action).

	bystander_list (list.) – List of bystanders (class Bystander), otf backend only!.

	enabled (bool.) – Switch this process on or of.

	chemical_expression (str.) – Chemical expression (i.e: A@site1 + B@site2 -> empty@site1 + AB@site2) to generate process from.

	tof_count (dict.) – Stoichiometric factor for observable products {‘NH3’: 1, ‘H2Ogas’: 2}. Hint: avoid space in keys.

	
class kmcos.types.ConditionAction(**kwargs)

	Represents either a condition or an action. Since both
have the same attributes we use the same class here, and just
store them in different lists, depending on its role. For better
readability one can also use Condition or Action which are
just aliases.

	Parameters

	
	coord (Coord) – Relative Coord (generated by LayerList.generate_coord()
or Lattice.generate_coord_set()).

	species (str) – Name of species.

	
class kmcos.types.Coord(**kwargs)

	Class that holds exactly one coordinate as used in the description
of a process. The distinction between a Coord and a Site may seem
superfluous but it is made to avoid data duplication.

	Parameters

	
	name (str) – Name of coordinate.

	offset (np.array or list) – Offset in term of unit-cells.

	layer (str) – Name of layer.

	tags (str) – List of tags (space separated string).

	
pos

	pos is np.array((3, 1)) and is calculated from offset and position. Not to be set manually.

kmcos.io

Features front-end import/export functions for kMC Projects.
Currently import and export is supported to XML
and export is supported to Fortran 90 source code.

	
kmcos.io.export_source(project_tree, export_dir=None, code_generator=None, options=None, accelerated=False)

	Export a kmcos project into Fortran 90 code that can be readily
compiled using f2py. The model contained in project_tree
will be stored under the directory export_dir. export_dir will
be created if it does not exist. The XML representation of the
model will be included in the kmc_settings.py module.

The variable project_tree is a Project object (from types.py)
and is analogous to the variable normally named kmc_model in a build file.

export_source is a central feature of the kmcos approach.
In order to generate different backend solvers, and allows additional candidates
for kmc methods to be implemented.

	
kmcos.io.export_xml(project_tree, filename=None)

	Writes a project to an XML file.

	
class kmcos.io.ProcListWriter(data, dir)

	Write the different parts of Fortran 90 code needed
to run a kMC model.

	
write_proclist(smart=True, code_generator='local_smart', accelerated=False)

	Write the proclist.f90 module, i.e. the rules which make up
the kMC process list.

	
write_settings(code_generator='lat_int', accelerated=False)

	Write the kmc_settings.py. This contains all parameters, which
can be changed on the fly and without recompilation of the Fortran 90
modules.
In this function, “data” is an object analogous to what is normally in the variable “kmc_model” (within a build file), and it is a Project class object from types.py (just like kmc_model is). But this is not actually the same object, it is a fresh object made from the xml (or ini) file.

Editor frontend

kmcos.gui

kmcos.forms

Runtime frontend

kmcos.run

A front-end module to run a compiled kMC model. The actual model is
imported in kmc_model.so and all parameters are stored in kmc_settings.py.

The model can be used directly like so:

from kmcos.model import KMC_Model
model = KMC_Model()

model.parameters.T = 500
model.do_steps(100000)
model.view()

which, of course can also be part of a python script.

The model can also be run in a different process using the
multiprocessing module. This mode is designed for use with
a GUI so that the CPU intensive kMC integration can run at
full throttle without impeding the front-end. Interaction with
the model happens through Queues.

	
class kmcos.run.ModelRunner

	Setup and initiate many runs in parallel over a regular grid
of parameters. A standard type of script is given below.

To allow execution from multiple hosts connected
to the same filesystem calculated points are blocked
via <classname>.lock. To redo a calculation <classname>.dat
and <classname>.lock should be moved out of the way

from kmcos.run import ModelRunner, PressureParameter, TemperatureParameter

class ScanKinetics(ModelRunner):
 p_O2gas = PressureParameter(1)
 T = TemperatureParameter(600)
 p_COgas = PressureParameter(min=1, max=10, steps=40)
 # ... other parameters to scan

ScanKinetics().run(init_steps=1e7, sample_steps=1e7, cores=4)

	
run(init_steps=100000000.0, sample_steps=100000000.0, cores=4, samples=1, random_seed=None)

	Launch the ModelRunner instance. Creates a regular grid over
all ModelParameters defined in the ModelRunner class.

	Parameters

	init_steps – Steps to run model before sampling (.ie. to reach steady-state).

(Default: 1e8)
:type init_steps: int
:param sample_steps: Number of steps to sample over (Default: 1e8)
:type sample_steps: int
:param cores: Number of parallel processes to launch.
:type cores: int
:param samples: Number of samples. Use more samples if precise coverages are needed (Default: 1).
:type samples: int

	
class kmcos.run.ModelParameter(min, max=None, steps=1, type=None, unit='')

	A model parameter to be scanned. If instantiated with only
one value this parameter will be fixed at this value.

Use a subclass for specific type of grid.

	Parameters

	
	min (float) – Minimum value for this parameter.

	max (float) – Maximum value for this parameter (Default: min)

	steps (int) – Number of steps between minimum and maximum.

	
class kmcos.run.PressureParameter(*args, **kwargs)

	Create a grid of p in [p_min, p_max] such
that ln({p}) is a regular grid.

	
class kmcos.run.TemperatureParameter(*args, **kwargs)

	Create a grid of p in [T_min, T_max] such
that ({T})**(-1) is a regular grid.

	
class kmcos.run.LinearParameter(*args, **kwargs)

	Create a regular grid between min and max.

	
class kmcos.run.LogParameter(*args, **kwargs)

	Create a log grid between 10^min and 10^max
(like np.logspace)

kmcos.view

kmcos.cli

Entry point module for the command-line
interface. The kmcos executable should be
on the program path, import this modules
main function and run it.

To call kmcos command as you would from the shell,
use

kmcos.cli.main('...')

Every command can be shortened as long as it is non-ambiguous, e.g.

kmcos ex <xml-file>

instead of

kmcos export <xml-file>

etc.

You may also use syntax kmcos.export(”…”) for any cli command.

	
kmcos.cli.main(args=None)

	The CLI main entry point function.

The optional argument args, can be used to
directly supply command line argument like

$ kmcos <args>

otherwise args will be taken from STDIN.

kmcos.utils

Several utility functions that do not seem to fit somewhere
else.

	
kmcos.utils.build(options)

	Build binary with f2py binding from complete
set of source file in the current directory.

	
kmcos.utils.evaluate_kind_values(infile, outfile)

	Go through a given file and dynamically
replace all selected_int/real_kind calls
with the dynamically evaluated fortran code
using only code that the function itself
contains.

	
kmcos.utils.get_ase_constructor(atoms)

	Return the ASE constructor string for atoms.

	
kmcos.utils.split_sequence(seq, size)

	Take a list and a number n and return list
divided into n sublists of roughly equal size.

	
kmcos.utils.write_py(fileobj, images, **kwargs)

	Write a ASE atoms construction string for images
into fileobj.

kmcos kMC project DTD

A standardized kmc model format has been made in XML.
XML was chosen over JSON, pickle or alike because near 2010 it was the most flexible
and universal format with good methods to define the overall
structure of the data.

New infrastrcture for JSON formats now exists, and it is on the to-do list to
switch to using JSON to make a standard kmc model format.

One way to define an XML format is by using a document type description
(DTD) and in fact at every import a kmcos file is validated against
the DTD below.

<!ELEMENT kmc (meta?,species_list?,parameter_list?, lattice, process_list?,output_list?)>
 <!ATTLIST kmc
 version CDATA #REQUIRED
 >
 <!ELEMENT meta EMPTY>
 <!ATTLIST meta
 author CDATA #IMPLIED
 debug CDATA #IMPLIED
 email CDATA #IMPLIED
 model_dimension CDATA #IMPLIED
 model_name CDATA #IMPLIED
 >

 <!ELEMENT species_list (species)*>
 <!ATTLIST species_list
 default_species CDATA #IMPLIED
 >
 <!ELEMENT species EMPTY>
 <!ATTLIST species
 name CDATA #REQUIRED
 color CDATA #IMPLIED
 representation CDATA #IMPLIED
 tags CDATA #IMPLIED
 >
 <!ELEMENT parameter_list (parameter)*>
 <!ELEMENT parameter EMPTY>
 <!ATTLIST parameter
 name CDATA #REQUIRED
 value CDATA #IMPLIED
 adjustable CDATA #IMPLIED
 min CDATA #IMPLIED
 max CDATA #IMPLIED
 scale CDATA #IMPLIED
 >
 <!ELEMENT lattice (layer)*>
 <!ATTLIST lattice
 cell_size CDATA #REQUIRED
 default_layer CDATA #REQUIRED
 substrate_layer CDATA #IMPLIED
 representation CDATA #IMPLIED
 >
 <!ELEMENT layer (site)*>
 <!ATTLIST layer
 name CDATA #REQUIRED
 grid CDATA #IMPLIED
 grid_offset CDATA #IMPLIED
 color CDATA #IMPLIED
 >
 <!ELEMENT site EMPTY>
 <!ATTLIST site
 pos CDATA #REQUIRED
 type CDATA #REQUIRED
 tags CDATA #IMPLIED
 default_species CDATA #IMPLIED
 >
 <!ELEMENT process_list (process)*>
 <!ELEMENT process (condition|action)*>
 <!ATTLIST process
 name CDATA #REQUIRED
 rate_constant CDATA #REQUIRED
 enabled CDATA #IMPLIED
 tof_count CDATA #IMPLIED
 >
 <!ELEMENT condition EMPTY>
 <!ATTLIST condition
 coord_name CDATA #REQUIRED
 coord_layer CDATA #REQUIRED
 coord_offset CDATA #REQUIRED
 species CDATA #REQUIRED
 implicit CDATA #IMPLIED
 >
 <!ELEMENT action EMPTY>
 <!ATTLIST action
 coord_name CDATA #REQUIRED
 coord_layer CDATA #REQUIRED
 coord_offset CDATA #REQUIRED
 species CDATA #REQUIRED
 >
 <!ELEMENT output_list (output)*>
 <!ELEMENT output EMPTY>
 <!ATTLIST output
 item CDATA #REQUIRED
 >

Backends

In general the backend includes all functions that are implemented in Fortran90,
which therefore should not have to be changed by hand often. The backend is
divided into three modules, which import each other in the following way

base <- lattice <- proclist

The key for this division is reusability of the code. The base module
implement all aspects of the kMC code, which do not depend on the described
model. Thus it “never” has to change. The latttice module basically
repeats all methods of the base model in terms of lattice coordinates.
Thus the lattice module only changes, when the geometry of the model
changes, e.g. when you add or delete sites.
The proclist module implements the process list, that is the species
or states each site can have and the elementary steps. Typically that
changes most often while developing a model.

The rate constants and physical parameters of the system are not implemented
in the backend at all, since in the physical sense they are too high-level
to justify encoding and compilation at the Fortran level and so they
are typical read and parsed from a python script.

The kmcos.run.KMC_Model class implements a convenient interface for most of
these functions, however all public methods (in Fortran called subroutines)
and variables can also be accessed directly like so

from kmcos.run import KMC_Model
model = KMC_Model(print_rates=False, banner=False)
model.base.<TAB>
model.lattice.<TAB>
model.proclist.<TAB>

which works best in conjunction with ipython.

local_smart

kmcos/base

The base kMC module, which implements the kMC method on a [image: d = 1]
lattice. Virtually any lattice kMC model can be build on top of this.
The methods offered are:

	de/allocation of memory

	book-keeping of the lattice configuration and all available processes

	updating and tracking kMC time, kMC step and wall time

	saving and reloading the current state

	determine the process and site to be executed

base/accum_rates

Stores the accumulated rate constant multiplied with the number
of sites available for that process to be used by determine_procsite.
Let [image: \mathbf{c}] be the rate constants [image: \mathbf{n}]
the number of available sites, and [image: \mathbf{a}]
the accumulated rates, then [image: a_{i}]
is calculated according to [image: a_{i}=\sum_{j=1}^{i} c_{j} n_{j}].

base/add_proc

The main idea of this subroutine is described in del_proc. Adding one
process to one capability is programmatically simpler since we can just
add it to the end of the respective array in avail_sites.

	proc positive integer number that represents the process to be added.

	site positive integer number that represents the site to be manipulated

base/allocate_system

Allocates all book-keeping structures and stores
local copies of system name and size(s):

	systen_name identifier of this simulation, used as name of punch file

	volume the total number of sites

	nr_of_proc the total number of processes

base/assertion_fail

Function that shall be used by all parts of the program to print a
proper message in case some assertion fails.

	a condition that is supposed to hold true

	r message that is printed to the poor user in case it fails

base/avail_sites

Main book-keeping array that stores for each process the sites
that are available and for each site the address
in this very array. The meaning of the fields are:

avail_sites(proc, field, switch)

where:

	proc – refers to a process in the process list

	the field within the process, but the meaning differs as explained
under ‘switch’

	switch – can be either 1 or 2 and switches between
(1) the actual numbers of the sites, which are available
and filled in from the left but in whatever order they come
or (2) the location where the site is stored in (1).

base/can_do

Returns true if ‘site’ can do ‘proc’ right now

	proc integer representing the requested process.

	site integer representing the requested site.

	can writeable boolean, where the result will be stored.

base/deallocate_system

Deallocate all allocatable arrays: avail_sites, lattice, rates,
accum_rates, integ_rates, procstat.

none

base/del_proc

del_proc delete one process from the main book-keeping array
avail_sites. These book-keeping operations happen in O(1) time with the
help of some more book-keeping overhead. avail_sites stores for each
process all sites that are available. The array for each process is
filled from the left, but sites generally not ordered. With this
determine_procsite can effectively pick the next site and process. On
the other hand a second array (avail_sites(:,:,2)) holds for each
process and each site, the location where it is stored in
avail_site(:,:,1). If a site needs to be removed this subroutine first
looks up the location via avail_sites(:,:,1) and replaces it with the
site that is stored as the last element for this process.

	proc positive integer that states the process

	site positive integer that encodes the site to be manipulated

base/determine_procsite

Expects two random numbers between 0 and 1 and determines the
corresponding process and site from accum_rates and avail_sites.
Technically one random number would be sufficient but to circumvent
issues with wrong interval_search_real implementation or rounding
errors I decided to take two random numbers:

	ran_proc Random real number from [image: \in[0,1]] that selects the next process

	ran_site Random real number from [image: \in[0,1]] that selects the next site

	proc Return integer [image: \in[1,\mathrm{nr_of_proc}]

	site Return integer [image: \in [1,\mathrm{volume}]

base/get_accum_rate

Return accumulated rate at a given process.

	proc_nr integer representing the requested process.

	return_accum_rate writeable real, where the requested accumulated rate will be stored.

base/get_avail_site

Return field from the avail_sites database

	proc_nr integer representing the requested process.

	field integer for the site at question

	switch 1 or 2 for site or storage location

base/get_integ_rate

Return integrated rate at a given process.

	proc_nr integer representing the requested process.

	return_integ_rate writeable real, where the requested integrated rate will be stored.

base/get_kmc_step

Return the current kmc_step

	kmc_step Writeable integer

base/get_kmc_time

Returns current kmc_time as rdouble real as defined in kind_values.f90.

	return_kmc_time writeable real, where the kmc_time will be stored.

base/get_kmc_time_step

Returns current kmc_time_step (the time increment).

	return_kmc_step writeable real, where the kmc_time_step will be stored.

base/get_kmc_volume

Return the total number of sites.

	volume Writeable integer.

base/get_nrofsites

Return how many sites are available for a certain process.
Usually used for debugging

	proc integer representing the requested process

	return_nrofsites writeable integer, where nr of sites gets stored

base/get_procstat

Return process counter for process proc as integer.

	proc integer representing the requested process.

	return_procstat writeable integer, where the process counter will be stored.

base/get_rate

Return rate of given process.

	proc_nr integer representing the requested process.

	return_rate writeable real, where the requested rate will be stored.

base/get_species

Return the species that occupies site.

	site integer representing the site

base/get_system_name

Return the systems name, that was specified with base/allocate_system

	system_name Writeable string of type character(len=200).

base/get_walltime

Return the current walltime.

	return_walltime writeable real where the walltime will be stored.

base/increment_procstat

Increment the process counter for process proc by one.

	proc integer representing the process to be increment.

base/integ_rates

Stores the time-integrated rates (non-normalized to surface area)
Used to determine reaction rates, i.e. average number of reactions
per unit surface and time.
Let [image: \mathbf{a}] the integrated rates, [image: \mathbf{c}] be the
rate constants, [image: \mathbf{n}_i] the number of available sites
during kMC-time interval i, [image: \{\Delta t_i\}] the corresponding
timesteps then [image: a_{i}(t)] at the time [image: t=\sum_{i=1}\Delta t_i]
is calculated according to [image: a_{i}(t)=\sum_{i=1} c_{i} n_{i}\Delta t_i].

base/interval_search_real

This is basically a standard binary search algorithm that expects an array
of ascending real numbers and a scalar real and return the key of the
corresponding field, with the following modification :

	the value of the returned field is equal of larger of the given
value. This is important because the given value is between 0 and the
largest value in the array and otherwise the last field is never
selected.

	if two or more values in the array are identical, the function
return the index of the leftmost of those field. This is important
because having field with identical values means that all field except
the leftmost one do not contain any sites. Refer to
update_accum_rate to understand why.

	the value of the returned field may no be zero. Therefore the index
the to be equal or larger than the first non-zero field.

However: as everyone knows the binary search is trickier than it appears
at first site especially real numbers. So intensive testing is
suggested here!

	arr real array of type rsingle (kind_values.f90) in monotonically (not strictly) increasing order

	value real positive number from [0, max_arr_value]

base/kmc_step

Number of kMC steps executed.

base/kmc_time

Simulated kMC time in this run in seconds.

base/kmc_time_step

The time increment of the current kMC step.

base/lattice

Stores the actual physical lattice in a 1d array, where the value
on each slot represents the species on that site.

Species constants can be conveniently defined
in lattice_… and later used directly in the process list.

base/nr_of_proc

Total number of available processes.

base/nr_of_sites

Stores the number of sites available for each process.

base/procstat

Stores the total number of times each process has been executed
during one simulation.

base/rates

Stores the rate constants for each process in s^-1.

base/reload_system

Restore state of simulation from *.reload file as saved by
save_system(). This function also allocates the system’s memory
so calling allocate_system again, will cause a runtime failure.

	system_name string of 200 characters which will make the reload_system look for a file called ./<system_name>.reload

	reloaded logical return variable, that is .true. reload of system could be completed successfully, and .false. otherwise.

base/replace_species

Replaces the species at a given site with new_species, given
that old_species is correct, i.e. identical to the site that
is already there.

	site integer representing the site

	old_species integer representing the species to be removed

	new_species integer representing the species to be placed

base/reset_site

This function is a higher-level function to reset a site
as if it never existed. To achieve this the species
is set to null_species and all available processes
are stripped from the site via del_proc.

	site integer representing the requested site.

	species integer representing the species that ought to be at the site, for consistency checks

base/save_system

save_system stores the entire system information in a simple ASCII
filed names <system_name>.reload. All fields except avail_sites are
stored in the simple scheme:

variable value

In the case of array variables, multiple values are seperated by one or
more spaces, and the record is terminated with a newline. The variable
avail_sites is treated slightly differently, since printed on a single
line it is almost impossible to interpret from the ASCII files. Instead
each process starts a new line, and the first number on the line stands
for the process number and the remaining fields, hold the values.

none

base/set_kmc_step

Sets the current kmc_step

	kmc_step Writeable integer

base/set_kmc_time

Sets current kmc_time as rdouble real as defined in kind_values.f90.

	new readable real, that the kmc time will be set to

base/set_rate_const

Allows to set the rate constant of the process with the number proc_nr.

	proc_n The process number as defined in the corresponding proclist_ module.

	rate the rate in [image: s^{-1}]

base/set_system_name

Set the systems name. Useful in conjunction with base.save_system
to save *.reload files under a different name than the default one.

	system_name Readable string of type character(len=200).

base/start_time

CPU time spent in simulation at least reload.

base/system_name

Unique indentifier of this simulation to be used for restart files.
This name should not contain any characters that you don’t want to
have in a filename either, i.e. only [A-Za-z0-9_-].

base/update_accum_rate

Updates the vector of accum_rates.

none

base/update_clocks

Updates walltime, kmc_step and kmc_time.

	ran_time Random real number [image: \in [0,1]]

base/update_integ_rate

Updates the vector of integ_rates.

none

base/volume

Total number of sites.

base/walltime

Total CPU time spent on this simulation.

kmcos/lattice

Implements the mappings between the real space lattice
and the 1-D lattice, which kmcos/base operates on.
Furthermore replicates all geometry specific functions of kmcos/base
in terms of lattice coordinates.
Using this module each site can be addressed with 4-tuple
(i, j, k, n) where i, j, k define the unit cell and
n the site within the unit cell.

lattice/allocate_system

Allocates system, fills mapping cache, and
checks whether mapping is consistent

none

lattice/calculate_lattice2nr

Maps all lattice coordinates onto a continuous
set of integer [image: \in [1,volume]]

	site integer array of size (4) a lattice coordinate

lattice/calculate_nr2lattice

Maps a continuous set of
of integers [image: \in [1,volume]] to a
4-tuple representing a lattice coordinate

	nr integer representing the site index

lattice/deallocate_system

Deallocates system including mapping cache.

none

lattice/default_layer

The layer in which the model is initially in by default (only relevant for multi-lattice models).

lattice/lattice2nr

Caching array holding the mapping from index to lattice
coordinate: (x, y, z, n) -> i.

lattice/model_dimension

Store the number of dimensions of this model: 1, 2, or 3

lattice/nr2lattice

Caching array holding the mapping from index to lattice
coordinate: i -> (x, y, z, n).

lattice/nr_of_layers

Constant storing the number of layers (for multi-lattice models > 1)

lattice/site_positions

The positions of (adsorption) site in the unit cell in
fractional coordinates.

lattice/spuck

spuck = Sites Per Unit Cell Konstant
The number of sites per unit cell, i.e. for coordinate
notation (x, y, n) this is the maximum value of n.

lattice/system_size

Stores the current size of the allocated system lattice (x, y, z)
in an integer array. In low-dimensional system, corresponding entries will be set to 1.
Note that this should be thought of as a read-only variable. Changing its value at model
runtime will not the indented effect of actually changing the simulated lattice.
The definitive location for custom lattice size is simulation_size in kmc_settings.py.

If the system size shall be changed programmatically, it needs to happen before the KMC_Model
is instantiated and Fortran array are allocated accordingly, like to

#!/usr/bin/env python3

import kmc_settings
import kmcos.run

kmc_settings.simulation_size = 9, 9, 4

	with kmcos.run.KMC_Model() as model:

	print(model.lattice.system_size)))`

lattice/unit_cell_size

The dimensions of the unit cell (e.g. in Angstrom) of the
unit cell.

kmcos/proclist

Implements the kMC process list.

proclist/do_kmc_step

Performs exactly one kMC step.
* first update clock
* then configuration sampling step
* last execute process

none

proclist/do_kmc_steps

Performs n kMC step.
If one has to run many steps without evaluation
do_kmc_steps might perform a little better.
* first update clock
* then configuration sampling step
* last execute process

n : Number of steps to run

proclist/do_kmc_steps_time

Performs a variable number of KMC steps to try to match the requested
simulation time as closely as possible without going over. This routine
always performs at least one KMC step before terminating.
* Determine the time step for the next process
* If the time limit is not exceeded, update clocks, rates, execute process,

etc.; otherwise, abort.

Ideally we would use state(seed_size) but that was not working, so hardcoded size.

t : Requested simulation time increment (input)
n : Maximum number of steps to run (input)
num_iter : the number of executed iterations (output)

proclist/get_next_kmc_step

Determines next step without executing it.
However, it changes the position in the random_number
sequence. The python function for
model.get_next_kmc_step() should be used
as it makes additional function calls
to reset the random numbers.
Calling model.proclist.get_next_kmc_step()
is discouraged as that will call this subroutine
directly and will not reset the random numbers.

none

proclist/get_occupation

Evaluate current lattice configuration and returns
the normalized occupation as matrix. Different species
run along the first axis and different sites run
along the second.

none

proclist/get_seed

	Function to retrieve the state of the random number generator to

	permit reproducible restart trajectories.

	None

proclist/init

Allocates the system and initializes all sites in the given
layer.

	input_system_size number of unit cell per axis.

	system_name identifier for reload file.

	layer initial layer.

	no_banner [optional] if True no copyright is issued.

proclist/initialize_state

Initialize all sites and book-keeping array
for the given layer.

	layer integer representing layer

proclist/put_seed

Subroutine to set the state of the random number generator to
permit reproducible restart trajectories.

	state an array of integers with the state of the random number

generator (input)

proclist/run_proc_nr

Runs process proc on site nr_site.

	proc integer representing the process number

	nr_site integer representing the site

proclist/seed_gen

Function to transform a single number into a full set of integers
required for initializing the random number generator.

	sd an integer used to seed a simple random number generator

used to generate additional integers for seeding the production random
number generator (input)

kmcos/kind_values

This module offers kind_values for commonly
used intrinsic types in a platform independent way.

lat_int

kmcos/base

The base kMC module, which implements the kMC method on a [image: d = 1]
lattice. Virtually any lattice kMC model can be build on top of this.
The methods offered are:

	de/allocation of memory

	book-keeping of the lattice configuration and all available processes

	updating and tracking kMC time, kMC step and wall time

	saving and reloading the current state

	determine the process and site to be executed

base/accum_rates

Stores the accumulated rate constant multiplied with the number
of sites available for that process to be used by determine_procsite.
Let [image: \mathbf{c}] be the rate constants [image: \mathbf{n}]
the number of available sites, and [image: \mathbf{a}]
the accumulated rates, then [image: a_{i}]
is calculated according to [image: a_{i}=\sum_{j=1}^{i} c_{j} n_{j}].

base/add_proc

The main idea of this subroutine is described in del_proc. Adding one
process to one capability is programmatically simpler since we can just
add it to the end of the respective array in avail_sites.

	proc positive integer number that represents the process to be added.

	site positive integer number that represents the site to be manipulated

base/allocate_system

Allocates all book-keeping structures and stores
local copies of system name and size(s):

	systen_name identifier of this simulation, used as name of punch file

	volume the total number of sites

	nr_of_proc the total number of processes

base/assertion_fail

Function that shall be used by all parts of the program to print a
proper message in case some assertion fails.

	a condition that is supposed to hold true

	r message that is printed to the poor user in case it fails

base/avail_sites

Main book-keeping array that stores for each process the sites
that are available and for each site the address
in this very array. The meaning of the fields are:

avail_sites(proc, field, switch)

where:

	proc – refers to a process in the process list

	the field within the process, but the meaning differs as explained
under ‘switch’

	switch – can be either 1 or 2 and switches between
(1) the actual numbers of the sites, which are available
and filled in from the left but in whatever order they come
or (2) the location where the site is stored in (1).

base/can_do

Returns true if ‘site’ can do ‘proc’ right now

	proc integer representing the requested process.

	site integer representing the requested site.

	can writeable boolean, where the result will be stored.

base/deallocate_system

Deallocate all allocatable arrays: avail_sites, lattice, rates,
accum_rates, procstat.

none

base/del_proc

del_proc delete one process from the main book-keeping array
avail_sites. These book-keeping operations happen in O(1) time with the
help of some more book-keeping overhead. avail_sites stores for each
process all sites that are available. The array for each process is
filled from the left, but sites generally not ordered. With this
determine_procsite can effectively pick the next site and process. On
the other hand a second array (avail_sites(:,:,2)) holds for each
process and each site, the location where it is stored in
avail_site(:,:,1). If a site needs to be removed this subroutine first
looks up the location via avail_sites(:,:,1) and replaces it with the
site that is stored as the last element for this process.

	proc positive integer that states the process

	site positive integer that encodes the site to be manipulated

base/determine_procsite

Expects two random numbers between 0 and 1 and determines the
corresponding process and site from accum_rates and avail_sites.
Technically one random number would be sufficient but to circumvent
issues with wrong interval_search_real implementation or rounding
errors I decided to take two random numbers:

	ran_proc Random real number from [image: \in[0,1]] that selects the next process

	ran_site Random real number from [image: \in[0,1]] that selects the next site

	proc Return integer [image: \in[1,\mathrm{nr_of_proc}]

	site Return integer [image: \in [1,\mathrm{volume}]

base/get_accum_rate

Return accumulated rate at a given process.

	proc_nr integer representing the requested process.

	return_accum_rate writeable real, where the requested accumulated rate will be stored.

base/get_avail_site

Return field from the avail_sites database

	proc_nr integer representing the requested process.

	field integer for the site at question

	switch 1 or 2 for site or storage location

base/get_integ_rate

Return integrated rate at a given process.

	proc_nr integer representing the requested process.

	return_integ_rate writeable real, where the requested integrated rate will be stored.

base/get_kmc_step

Return the current kmc_step

	kmc_step Writeable integer

base/get_kmc_time

Returns current kmc_time as rdouble real as defined in kind_values.f90.

	return_kmc_time writeable real, where the kmc_time will be stored.

base/get_kmc_time_step

Returns current kmc_time_step (the time increment).

	return_kmc_step writeable integer, where the kmc_time_step will be stored.

base/get_kmc_volume

Return the total number of sites.

	volume Writeable integer.

base/get_nrofsites

Return how many sites are available for a certain process.
Usually used for debugging

	proc integer representing the requested process

	return_nrofsites writeable integer, where nr of sites gets stored

base/get_procstat

Return process counter for process proc as integer.

	proc integer representing the requested process.

	return_procstat writeable integer, where the process counter will be stored.

base/get_rate

Return rate of given process.

	proc_nr integer representing the requested process.

	return_rate writeable real, where the requested rate will be stored.

base/get_species

Return the species that occupies site.

	site integer representing the site

base/get_system_name

Return the systems name, that was specified with base/allocate_system

	system_name Writeable string of type character(len=200).

base/get_walltime

Return the current walltime.

	return_walltime writeable real where the walltime will be stored.

base/increment_procstat

Increment the process counter for process proc by one.

	proc integer representing the process to be increment.

base/integ_rates

Stores the time-integrated rates (non-normalized to surface area)
Used to determine reaction rates, i.e. average number of reactions
per unit surface and time.
Let [image: \mathbf{a}] the integrated rates, [image: \mathbf{c}] be the
rate constants, [image: \mathbf{n}_i] the number of available sites
during kMC-time interval i, [image: \{\Delta t_i\}] the corresponding
timesteps then [image: a_{i}(t)] at the time [image: t=\sum_{i=1}\Delta t_i]
is calculated according to [image: a_{i}(t)=\sum_{i=1} c_{i} n_{i}\Delta t_i].

base/interval_search_real

This is basically a standard binary search algorithm that expects an array
of ascending real numbers and a scalar real and return the key of the
corresponding field, with the following modification :

	the value of the returned field is equal of larger of the given
value. This is important because the given value is between 0 and the
largest value in the array and otherwise the last field is never
selected.

	if two or more values in the array are identical, the function
return the index of the leftmost of those field. This is important
because having field with identical values means that all field except
the leftmost one do not contain any sites. Refer to
update_accum_rate to understand why.

	the value of the returned field may no be zero. Therefore the index
the to be equal or larger than the first non-zero field.

However: as everyone knows the binary search is trickier than it appears
at first site especially real numbers. So intensive testing is
suggested here!

	arr real array of type rsingle (kind_values.f90) in monotonically (not strictly) increasing order

	value real positive number from [0, max_arr_value]

base/kmc_step

Number of kMC steps executed.

base/kmc_time

Simulated kMC time in this run in seconds.

base/kmc_time_step

The time increment of the current kMC step.

base/lattice

Stores the actual physical lattice in a 1d array, where the value
on each slot represents the species on that site.

Species constants can be conveniently defined
in lattice_… and later used directly in the process list.

base/nr_of_proc

Total number of available processes.

base/nr_of_sites

Stores the number of sites available for each process.

base/procstat

Stores the total number of times each process has been executed
during one simulation.

base/rates

Stores the rate constants for each process in s^-1.

base/reload_system

Restore state of simulation from *.reload file as saved by
save_system(). This function also allocates the system’s memory
so calling allocate_system again, will cause a runtime failure.

	system_name string of 200 characters which will make the reload_system look for a file called ./<system_name>.reload

	reloaded logical return variable, that is .true. reload of system could be completed successfully, and .false. otherwise.

base/replace_species

Replaces the species at a given site with new_species, given
that old_species is correct, i.e. identical to the site that
is already there.

	site integer representing the site

	old_species integer representing the species to be removed

	new_species integer representing the species to be placed

base/reset_site

This function is a higher-level function to reset a site
as if it never existed. To achieve this the species
is set to null_species and all available processes
are stripped from the site via del_proc.

	site integer representing the requested site.

	species integer representing the species that ought to be at the site, for consistency checks

base/save_system

save_system stores the entire system information in a simple ASCII
filed names <system_name>.reload. All fields except avail_sites are
stored in the simple scheme:

variable value

In the case of array variables, multiple values are seperated by one or
more spaces, and the record is terminated with a newline. The variable
avail_sites is treated slightly differently, since printed on a single
line it is almost impossible to interpret from the ASCII files. Instead
each process starts a new line, and the first number on the line stands
for the process number and the remaining fields, hold the values.

none

base/set_kmc_time

Sets current kmc_time as rdouble real as defined in kind_values.f90.

	new readable real, that the kmc time will be set to

base/set_rate_const

Allows to set the rate constant of the process with the number proc_nr.

	proc_n The process number as defined in the corresponding proclist_ module.

	rate the rate in [image: s^{-1}]

base/set_system_name

Set the systems name. Useful in conjunction with base.save_system
to save *.reload files under a different name than the default one.

	system_name Readable string of type character(len=200).

base/start_time

CPU time spent in simulation at least reload.

base/system_name

Unique indentifier of this simulation to be used for restart files.
This name should not contain any characters that you don’t want to
have in a filename either, i.e. only [A-Za-z0-9_-].

base/update_accum_rate

Updates the vector of accum_rates.

none

base/update_clocks

Updates walltime, kmc_step and kmc_time.

	ran_time Random real number [image: \in [0,1]]

base/update_integ_rate

Updates the vector of integ_rates.

none

base/volume

Total number of sites.

base/walltime

Total CPU time spent on this simulation.

kmcos/lattice

Implements the mappings between the real space lattice
and the 1-D lattice, which kmcos/base operates on.
Furthermore replicates all geometry specific functions of kmcos/base
in terms of lattice coordinates.
Using this module each site can be addressed with 4-tuple
(i, j, k, n) where i, j, k define the unit cell and
n the site within the unit cell.

lattice/allocate_system

Allocates system, fills mapping cache, and
checks whether mapping is consistent

none

lattice/calculate_lattice2nr

Maps all lattice coordinates onto a continuous
set of integer [image: \in [1,volume]]

	site integer array of size (4) a lattice coordinate

lattice/calculate_nr2lattice

Maps a continuous set of
of integers [image: \in [1,volume]] to a
4-tuple representing a lattice coordinate

	nr integer representing the site index

lattice/deallocate_system

Deallocates system including mapping cache.

none

lattice/default_layer

The layer in which the model is initially in by default (only relevant for multi-lattice models).

lattice/lattice2nr

Caching array holding the mapping from index to lattice
coordinate: (x, y, z, n) -> i.

lattice/model_dimension

Store the number of dimensions of this model: 1, 2, or 3

lattice/nr2lattice

Caching array holding the mapping from index to lattice
coordinate: i -> (x, y, z, n).

lattice/nr_of_layers

Constant storing the number of layers (for multi-lattice models > 1)

lattice/site_positions

The positions of (adsorption) site in the unit cell in
fractional coordinates.

lattice/spuck

spuck = Sites Per Unit Cell Konstant
The number of sites per unit cell, i.e. for coordinate
notation (x, y, n) this is the maximum value of n.

lattice/system_size

Stores the current size of the allocated system lattice (x, y, z)
in an integer array. In low-dimensional system, corresponding entries will be set to 1.
Note that this should be thought of as a read-only variable. Changing its value at model
runtime will not the indented effect of actually changing the simulated lattice.
The definitive location for custom lattice size is simulation_size in kmc_settings.py.

If the system size shall be changed programmatically, it needs to happen before the KMC_Model
is instantiated and Fortran array are allocated accordingly, like to

#!/usr/bin/env python3

import kmc_settings
import kmcos.run

kmc_settings.simulation_size = 9, 9, 4

	with kmcos.run.KMC_Model() as model:

	print(model.lattice.system_size)))`

lattice/unit_cell_size

The dimensions of the unit cell (e.g. in Angstrom) of the
unit cell.

kmcos/proclist

Implements the kMC process list.

proclist/do_kmc_step

Performs exactly one kMC step.
* first update clock
* then configuration sampling step
* last execute process

none

proclist/do_kmc_steps

Performs n kMC step.
If one has to run many steps without evaluation
do_kmc_steps might perform a little better.
* first update clock
* then configuration sampling step
* last execute process

n : Number of steps to run

proclist/do_kmc_steps_time

Performs a variable number of KMC steps to try to match the requested
simulation time as closely as possible without going over. This routine
always performs at least one KMC step before terminating.
* Determine the time step for the next process
* If the time limit is not exceeded, update clocks, rates, execute process,

etc.; otherwise, abort.

Ideally we would use state(seed_size) but that was not working, so hardcoded size.

t : Requested simulation time increment (input)
n : Maximum number of steps to run (input)
num_iter : the number of executed iterations (output)

proclist/get_next_kmc_step

Determines next step without executing it.
However, it changes the position in the random_number
sequence. The python function for
model.get_next_kmc_step() should be used
as it makes additional function calls
to reset the random numbers.
Calling model.proclist.get_next_kmc_step()
is discouraged as that will call this subroutine
directly and will not reset the random numbers.

none

proclist/get_occupation

Evaluate current lattice configuration and returns
the normalized occupation as matrix. Different species
run along the first axis and different sites run
along the second.

none

proclist/get_seed

	Function to retrieve the state of the random number generator to

	permit reproducible restart trajectories.

	None

proclist/init

Allocates the system and initializes all sites in the given
layer.

	input_system_size number of unit cell per axis.

	system_name identifier for reload file.

	layer initial layer.

	no_banner [optional] if True no copyright is issued.

proclist/initialize_state

Initialize all sites and book-keeping array
for the given layer.

	layer integer representing layer

proclist/put_seed

Subroutine to set the state of the random number generator to
permit reproducible restart trajectories.

	state an array of integers with the state of the random number

generator (input)

proclist/seed_gen

Function to transform a single number into a full set of integers
required for initializing the random number generator.

	sd an integer used to seed a simple random number generator

used to generate additional integers for seeding the production random
number generator (input)

kmcos/kind_values

This module offers kind_values for commonly
used intrinsic types in a platform independent way.

otf

kmcos/base

The base kMC module, which implements the kMC method on a [image: d = 1]
lattice. Virtually any lattice kMC model can be build on top of this.
The methods offered are:

	de/allocation of memory

	book-keeping of the lattice configuration and all available processes

	updating and tracking kMC time, kMC step and wall time

	saving and reloading the current state

	determine the process and site to be executed

base/accum_rates

Stores the accumulated rate constant up to a given process number
taking into account all sites in which it is possible.
###

base/accum_rates_proc

Used to store the accumulated rate associated to each process
###

base/add_proc

The main idea of this subroutine is described in del_proc. Adding one
process to one capability is programmatically simpler since we can just
add it to the end of the respective array in avail_sites.

	proc positive integer number that represents the process to be added.

	site positive integer number that represents the site to be manipulated

base/allocate_system

Allocates all book-keeping structures and stores
local copies of system name and size(s):

	systen_name identifier of this simulation, used as name of punch file

	volume the total number of sites

	nr_of_proc the total number of processes

base/assertion_fail

Function that shall be used by all parts of the program to print a
proper message in case some assertion fails.

	a condition that is supposed to hold true

	r message that is printed to the poor user in case it fails

base/avail_sites

Main book-keeping array that stores for each process the sites
that are available and for each site the address
in this very array. The meaning of the fields are:

avail_sites(proc, field, switch)

where:

	proc – refers to a process in the process list

	the field within the process, but the meaning differs as explained
under ‘switch’

	switch – can be either 1 or 2 and switches between
(1) the actual numbers of the sites, which are available
and filled in from the left but in whatever order they come
or (2) the location where the site is stored in (1).

base/can_do

Returns true if ‘site’ can do ‘proc’ right now

	proc integer representing the requested process.

	site integer representing the requested site.

	can writeable boolean, where the result will be stored.

base/deallocate_system

Deallocate all allocatable arrays: avail_sites, lattice, rates,
accum_rates, procstat.

none

base/del_proc

del_proc delete one process from the main book-keeping array
avail_sites. These book-keeping operations happen in O(1) time with the
help of some more book-keeping overhead. avail_sites stores for each
process all sites that are available. The array for each process is
filled from the left, but sites generally not ordered. With this
determine_procsite can effectively pick the next site and process. On
the other hand a second array (avail_sites(:,:,2)) holds for each
process and each site, the location where it is stored in
avail_site(:,:,1). If a site needs to be removed this subroutine first
looks up the location via avail_sites(:,:,1) and replaces it with the
site that is stored as the last element for this process.

	proc positive integer that states the process

	site positive integer that encodes the site to be manipulated

base/determine_procsite

Expects two random numbers between 0 and 1 and determines the
corresponding process and site from accum_rates and avail_sites.
Technically one random number would be sufficient but to circumvent
issues with wrong interval_search_real implementation or rounding
errors I decided to take two random numbers:

	ran_proc Random real number from [image: \in[0,1]] that selects the next process

	ran_site Random real number from [image: \in[0,1]] that selects the next site

	proc Return integer [image: \in[1,\mathrm{nr_of_proc}]

	site Return integer [image: \in [1,\mathrm{volume}]

base/get_accum_rate

Return accumulated rate at a given process.

	proc_nr integer representing the requested process.

	return_accum_rate writeable real, where the requested accumulated rate will be stored.

base/get_avail_site

Return field from the avail_sites database

	proc_nr integer representing the requested process.

	field integer for the site at question

	switch 1 or 2 for site or storage location

base/get_integ_rate

Return integrated rate at a given process.

	proc_nr integer representing the requested process.

	return_integ_rate writeable real, where the requested integrated rate will be stored.

base/get_kmc_step

Return the current kmc_step

	kmc_step Writeable integer

base/get_kmc_time

Returns current kmc_time as rdouble real as defined in kind_values.f90.

	return_kmc_time writeable real, where the kmc_time will be stored.

base/get_kmc_time_step

Returns current kmc_time_step (the time increment).

	return_kmc_step writeable integer, where the kmc_time_step will be stored.

base/get_kmc_volume

Return the total number of sites.

	volume Writeable integer.

base/get_nrofsites

Return how many sites are available for a certain process.
Usually used for debugging

	proc integer representing the requested process

	return_nrofsites writeable integer, where nr of sites gets stored

base/get_procstat

Return process counter for process proc as integer.

	proc integer representing the requested process.

	return_procstat writeable integer, where the process counter will be stored.

base/get_rate

Return rate of given process.

	proc_nr integer representing the requested process.

	return_rate writeable real, where the requested rate will be stored.

base/get_species

Return the species that occupies site.

	site integer representing the site

base/get_system_name

Return the systems name, that was specified with base/allocate_system

	system_name Writeable string of type character(len=200).

base/get_walltime

Return the current walltime.

	return_walltime writeable real where the walltime will be stored.

base/increment_procstat

Increment the process counter for process proc by one.

	proc integer representing the process to be increment.

base/integ_rates

Stores the time-integrated rates (non-normalized to surface area)
Used to determine reaction rates, i.e. average number of reactions
per unit surface and time.
Let [image: \mathbf{a}] the integrated rates, [image: \mathbf{c}] be the
rate constants, [image: \mathbf{n}_i] the number of available sites
during kMC-time interval i, [image: \{\Delta t_i\}] the corresponding
timesteps then [image: a_{i}(t)] at the time [image: t=\sum_{i=1}\Delta t_i]
is calculated according to
System Message: WARNING/2 (a_{i}(t)=\sum_{i=1}} c_{i} n_{i}\Delta t_i)

latex exited with error
[stdout]
This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=latex)
 restricted \write18 enabled.
entering extended mode
(./math.tex
LaTeX2e <2017-04-15>
Babel <3.18> and hyphenation patterns for 84 language(s) loaded.
(/usr/share/texlive/texmf-dist/tex/latex/base/article.cls
Document Class: article 2014/09/29 v1.4h Standard LaTeX document class
(/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo))
(/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty
(/usr/share/texlive/texmf-dist/tex/latex/ucs/utf8x.def))
(/usr/share/texlive/texmf-dist/tex/latex/ucs/ucs.sty
(/usr/share/texlive/texmf-dist/tex/latex/ucs/data/uni-global.def))
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
For additional information on amsmath, use the `?' option.
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty))
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty)
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty))
(/usr/share/texlive/texmf-dist/tex/latex/amscls/amsthm.sty)
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty))
(/usr/share/texlive/texmf-dist/tex/latex/anyfontsize/anyfontsize.sty)
(/usr/share/texlive/texmf-dist/tex/latex/tools/bm.sty) (./math.aux)
(/usr/share/texlive/texmf-dist/tex/latex/ucs/ucsencs.def)
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd)
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd)
! Extra }, or forgotten $.
l.13 ...e{12}{14}\selectfont $a_{i}(t)=\sum_{i=1}}
 c_{i} n_{i}\Delta t_i$
[1] (./math.aux))
(see the transcript file for additional information)
Output written on math.dvi (1 page, 456 bytes).
Transcript written on math.log.

.

base/interval_search_real

This is basically a standard binary search algorithm that expects an array
of ascending real numbers and a scalar real and return the key of the
corresponding field, with the following modification :

	the value of the returned field is equal or larger than given
value. This is important because the given value is between 0 and the
largest value in the array and otherwise the last field is never
selected.

	if two or more values in the array are identical, the function
return the index of the leftmost of those field. This is important
because having field with identical values means that all field except
the leftmost one do not contain any sites. Refer to
update_accum_rate to understand why.

	the value of the returned field may not be zero. Therefore the index
the to be equal or larger than the first non-zero field.

However: as everyone knows the binary search is trickier than it appears
at first sight especially real numbers. So intensive testing is
suggested here!

	arr real array of type rsingle (kind_values.f90) in monotonically (not strictly) increasing order

	value real positive number from [0, max_arr_value]

base/kmc_step

Number of kMC steps executed.

base/kmc_time

Simulated kMC time in this run in seconds.

base/kmc_time_step

The time increment of the current kMC step.

base/lattice

Stores the actual physical lattice in a 1d array, where the value
on each slot represents the species on that site.

Species constants can be conveniently defined
in lattice_… and later used directly in the process list.

base/nr_of_proc

Total number of available processes.

base/nr_of_sites

Stores the number of sites available for each process.

base/procstat

Stores the total number of times each process has been executed
during one simulation.

base/rates

Stores the rate constants for each currently possible process
ordered as avail_sites(:,:,1).

base/rates

Stores the rate constants for each process in s^-1.

base/reaccumulate_rates_matrix

Performs a process wide reaccumulation of the values in the rates_matrix.
To be used when some of the user parameters are updated.
Expected to aleviate some of the problems arising from floating point errors

base/reload_system

Restore state of simulation from *.reload file as saved by
save_system(). This function also allocates the system’s memory
so calling allocate_system again, will cause a runtime failure.

	system_name string of 200 characters which will make the reload_system look for a file called ./<system_name>.reload

	reloaded logical return variable, that is .true. reload of system could be completed successfully, and .false. otherwise.

base/replace_species

Replaces the species at a given site with new_species, given
that old_species is correct, i.e. identical to the site that
is already there.

	site integer representing the site

	old_species integer representing the species to be removed

	new_species integer representing the species to be placed

base/reset_site

This function is a higher-level function to reset a site
as if it never existed. To achieve this the species
is set to null_species and all available processes
are stripped from the site via del_proc.

	site integer representing the requested site.

	species integer representing the species that ought to be at the site, for consistency checks

base/save_system

save_system stores the entire system information in a simple ASCII
filed names <system_name>.reload. All fields except avail_sites are
stored in the simple scheme:

variable value

In the case of array variables, multiple values are seperated by one or
more spaces, and the record is terminated with a newline. The variable
avail_sites is treated slightly differently, since printed on a single
line it is almost impossible to interpret from the ASCII files. Instead
each process starts a new line, and the first number on the line stands
for the process number and the remaining fields, hold the values.

none

base/set_kmc_time

Sets current kmc_time as rdouble real as defined in kind_values.f90.

	new readable real, that the kmc time will be set to

base/set_rate_const

Allows to set the rate constant of the process with the number proc_nr.

	proc_n The process number as defined in the corresponding proclist_ module.

	rate the rate in [image: s^{-1}]

base/set_system_name

Set the systems name. Useful in conjunction with base.save_system
to save *.reload files under a different name than the default one.

	system_name Readable string of type character(len=200).

base/start_time

CPU time spent in simulation at least reload.

base/system_name

Unique indentifier of this simulation to be used for restart files.
This name should not contain any characters that you don’t want to
have in a filename either, i.e. only [A-Za-z0-9_-].

base/update_accum_rate

Updates the vector of accum_rates.

none

base/update_clocks

Updates walltime, kmc_step and kmc_time.

	ran_time Random real number [image: \in [0,1]]

base/update_integ_rate

Updates the vector of integ_rates.

none

base/update_rates_matrix

Updates the rates_matrix. To be used when the state of a bystander has
been modified

!

	proc positive integer number that represents the process whose rate is changed.

	site positive integer number that represents the site for the process

	rate positive real number that represents the updated rate

base/volume

Total number of sites.

base/walltime

Total CPU time spent on this simulation.

kmcos/lattice

Implements the mappings between the real space lattice
and the 1-D lattice, which kmcos/base operates on.
Furthermore replicates all geometry specific functions of kmcos/base
in terms of lattice coordinates.
Using this module each site can be addressed with 4-tuple
(i, j, k, n) where i, j, k define the unit cell and
n the site within the unit cell.

lattice/allocate_system

Allocates system, fills mapping cache, and
checks whether mapping is consistent

none

lattice/calculate_lattice2nr

Maps all lattice coordinates onto a continuous
set of integer [image: \in [1,volume]]

	site integer array of size (4) a lattice coordinate

lattice/calculate_nr2lattice

Maps a continuous set of
of integers [image: \in [1,volume]] to a
4-tuple representing a lattice coordinate

	nr integer representing the site index

lattice/deallocate_system

Deallocates system including mapping cache.

none

lattice/default_layer

The layer in which the model is initially in by default (only relevant for multi-lattice models).

lattice/lattice2nr

Caching array holding the mapping from index to lattice
coordinate: (x, y, z, n) -> i.

lattice/model_dimension

Store the number of dimensions of this model: 1, 2, or 3

lattice/nr2lattice

Caching array holding the mapping from index to lattice
coordinate: i -> (x, y, z, n).

lattice/nr_of_layers

Constant storing the number of layers (for multi-lattice models > 1)

lattice/site_positions

The positions of (adsorption) site in the unit cell in
fractional coordinates.

lattice/spuck

spuck = Sites Per Unit Cell Konstant
The number of sites per unit cell, i.e. for coordinate
notation (x, y, n) this is the maximum value of n.

lattice/system_size

Stores the current size of the allocated system lattice (x, y, z)
in an integer array. In low-dimensional system, corresponding entries will be set to 1.
Note that this should be thought of as a read-only variable. Changing its value at model
runtime will not the indented effect of actually changing the simulated lattice.
The definitive location for custom lattice size is simulation_size in kmc_settings.py.

If the system size shall be changed programmatically, it needs to happen before the KMC_Model
is instantiated and Fortran array are allocated accordingly, like to

#!/usr/bin/env python3

import kmc_settings
import kmcos.run

kmc_settings.simulation_size = 9, 9, 4

	with kmcos.run.KMC_Model() as model:

	print(model.lattice.system_size)))`

lattice/unit_cell_size

The dimensions of the unit cell (e.g. in Angstrom) of the
unit cell.

kmcos/proclist

Implements the kMC process list.

proclist/do_kmc_step

Performs exactly one kMC step.
* first update clock
* then configuration sampling step
* last execute process

none

proclist/do_kmc_steps

Performs n kMC step.
If one has to run many steps without evaluation
do_kmc_steps might perform a little better.
* first update clock
* then configuration sampling step
* last execute process

n : Number of steps to run

proclist/do_kmc_steps_time

Performs a variable number of KMC steps to try to match the requested
simulation time as closely as possible without going over. This routine
always performs at least one KMC step before terminating.
* Determine the time step for the next process
* If the time limit is not exceeded, update clocks, rates, execute process,

etc.; otherwise, abort.

Ideally we would use state(seed_size) but that was not working, so hardcoded size.

t : Requested simulation time increment (input)
n : Maximum number of steps to run (input)
num_iter : the number of executed iterations (output)

proclist/get_next_kmc_step

Determines next step without executing it.
However, it changes the position in the random_number
sequence. The python function for
model.get_next_kmc_step() should be used
as it makes additional function calls
to reset the random numbers.
Calling model.proclist.get_next_kmc_step()
is discouraged as that will call this subroutine
directly and will not reset the random numbers.

none

proclist/get_occupation

Evaluate current lattice configuration and returns
the normalized occupation as matrix. Different species
run along the first axis and different sites run
along the second.

none

proclist/get_seed

	Function to retrieve the state of the random number generator to

	permit reproducible restart trajectories.

	None

proclist/init

Allocates the system and initializes all sites in the given
layer.

	input_system_size number of unit cell per axis.

	system_name identifier for reload file.

	layer initial layer.

	no_banner [optional] if True no copyright is issued.

proclist/initialize_state

Initialize all sites and book-keeping array
for the given layer.

	layer integer representing layer

proclist/put_seed

Subroutine to set the state of the random number generator to
permit reproducible restart trajectories.

	state an array of integers with the state of the random number

generator (input)

proclist/run_proc_nr

Runs process proc on site nr_site.

	proc integer representing the process number

	nr_site integer representing the site

proclist/seed_gen

Function to transform a single number into a full set of integers
required for initializing the random number generator.

	sd an integer used to seed a simple random number generator

used to generate additional integers for seeding the production random
number generator (input)

kmcos/kind_values

This module offers kind_values for commonly
used intrinsic types in a platform independent way.

Command Line Interface (CLI)

	Entry point module for the command-line

	interface. The kmcos executable should be
on the program path, import this modules
main function and run it.

To call kmcos command as you would from the shell,
use

kmcos.cli.main('...')

Every command can be shortened as long as it is non-ambiguous, e.g.

kmcos ex <xml-file>

instead of

kmcos export <xml-file>

etc.

You may also use syntax kmcos.export(”…”) for any cli command.

List of commands

	kmcos benchmark

	Run 1 mio. kMC steps on model in current directory
and report runtime.

	kmcos build

	Build kmc_model.so from *f90 files in the
current directory.

	Additional Parameters ::

	
	-d/–debug

	Turn on assertion statements in F90 code

	-n/–no-compiler-optimization

	Do not send optimizing flags to compiler.

	kmcos edit <xml-file>

	Open the kmcos xml-file in a GUI to edit
the model.

	kmcos export <xml-file> [<export-path>]

	Take a kmcos xml-file and export all generated
source code to the export-path. There try to
build the kmc_model.so.

Additional Parameters

-s/--source-only
 Export source only and don't build binary

-b/--backend (local_smart|lat_int)
 Choose backend. Default is "local_smart".
 lat_int is EXPERIMENTAL and not made
 for production, yet.

-t/--temp_acc
 Use temporal acceleration scheme.
 Builds the modules base_acc.f90, lattice_acc.mpy,
 proclist_constants_acc.mpy and
 proclist_generic_subroutines_acc.mpy.
 Default is false.

-d/--debug
 Turn on assertion statements in F90 code.
 (Only active in compile step)

 --acf
 Build the modules base_acf.f90 and proclist_acf.f90. Default is false.
 This both modules contain functions to calculate ACF (autocorrelation function) and MSD (mean squared displacement).

-n/--no-compiler-optimization
 Do not send optimizing flags to compiler.

	kmcos help <command>

	Print usage information for the given command.

	kmcos help all

	Display documentation for all commands.

	kmcos import <xml-file>

	Take a kmcos xml-file and open an ipython shell
with the project_tree imported as pt.

	kmcos rebuild

	Export code and rebuild binary module from XML
information included in kmc_settings.py in
current directory.

	Additional Parameters ::

	
	-d/–debug

	Turn on assertion statements in F90 code

	kmcos run

	
	Open an interactive shell and create a KMC_Model in it

	run == shell

	kmcos settings-export <xml-file> [<export-path>]

	Take a kmcos xml-file and export kmc_settings.py
to the export-path.

	kmcos shell

	
	Open an interactive shell and create a KMC_Model in it

	run == shell

	kmcos version

	Print version number and exit.

	kmcos view

	Take a kmc_model.so and kmc_settings.py in the
same directory and start to simulate the
model visually.

	Additional Parameters ::

	
	-v/–steps-per-frame <number>

	Number of steps per frame

	kmcos xml

	Print xml representation of model to stdout

Trouble Shooting

	I found a bug or have a feature request. How can I get in touch ?

	Please post issues here [https://github.com/mhoffman/kmcos/issues]
or via email mjhoffmann .at. gmail .dot. com
or via twitter @maxjhoffmann

	My rate constant expression doesn’t work. How can I debug it?

	When initializing the model, the backend uses
kmcos.evaluate_rate_expression. So you can try

from kmcos import evaluate_rate_expression
evaluate_rate_expression('<your-string-here'>, parameters={})

where parameters is a dictionary defining the variable that
are defined in the context of the expression evaluation, like so

parameters = {'T': {'value': 500},
 'p_NClgas': {'value': 1},
 }

Test only parts of your expression to localize the error. Typical
mistakes are syntax errors (e.g. unclosed parentheses) and
forgotten conversion factors (e.g. eV) which can easily lead to
overflow if written in the exponent.

	How can I print the chemical potential value, that kmcos is using internally?

	You can then print the explicit value for specific conditions in kmcos shell, for
example like so

from kmcos import evaluate_rate_expression
print(
 evaluate_rate_expression('mu_COgas',
 {'T':{'value':600},
 'p_COgas': {'value':1}
 }
)))

where ‘CO’ should be replaced by whatever gas species you are inspecting. And the
resulting number is given in eV.
kmcos linearly interpolates the gas phase chemical potential from the NIST JANAF
thermochemical tables if you have downloaded them manually. If you don’t have them
installed, an error message should get raised which explains how to do so.

	When I use kmcos shell the model doesn’t have the species and sites I have defined.

	Note that Fortran is case-insensitive. Therefore f2py turns
all variable and functions names into lower case by convention.
Try to lower-case your species or site name.

	When I run kmcos the GUI way and close it, it seems to hang and I need to use the window manager to kill it.

	This is a bug waiting to be fixed. To avoid it close
the window showing the atoms object by clicking on its
close button or Alt-F4 or whichever shortcut your WM uses.

	Running a model it sometimes prints Warning: numerical precision too low, to resolve time-steps

	This means that the kMC step of the current process was so
small compared to the current kMC time that for the processor
[image: t + \Delta t = t]. This should under normal circumstances
only occur if you changed external conditions during a kMC run.

Otherwise it could mean that your rate constants vary over
12 or more orders of magnitude. If this is the case one needs
to wonder whether non-coarse graind kMC is actually the right
approach for the system. On the hand because the selection of
the next process will no longer be reliable and second because
reasonable sampling of all involved process may no longer happen.

	When running a model without GUI evaluation steps seem very slow.

	If you have a kmcos.run.KMC_Model instance and call model.get_atoms()
the generation of the real-space geometry takes the longest time. If you
only have to evaluate coverages or turn-over frequencies you are
better off using model.get_atoms(geometry=False), which returns an
object with all numbers but without the actual geometry.

	What units is kmcos using ?

	By default length are measured in angstrom, energies in eV, pressure
in bar, constants are taken from CODATA 2010. Note that the rate
expressions though contain explicit conversion factors like bar,
eV etc. If in doubt check the resulting rate constants by hand.

	How can I change the occupation of a model at runtime?

	This is explained in detail at Manipulating the Model Species at Runtime though
the import bit is that you call

model._adjust_database()

after changing the occupation and before doing the next kMC step.

	How can I quickly obtain k_tot ?

	
	That is ::

	model.base.get_accum_rate(model.proclist.nr_of_proc)

	How can I check the system size ?

	
	You can check ::

	model.lattice.system_size

to get the number of unit cell in the x, y, and z direction.
The number of sites per unit cell is stored in

model.lattice.spuck

a.k.a Sites Per Unit Cell Konstant :-).
Or you check

model.base.get_volume()

	to get the total number of sites, i.e. ::

	model.base.get_volume() == model.lattice.system_size.prod()*model.lattice.spuck
=> True

More to follow.

Todo

Explain post-mortem procedure

Frequently Asked Questions

	What other kMC codes are there?

	Kinetic Monte Carlo codes that I am currently aware of,
that are in some form released on the intertubes are
with no claim of completeness :

	akmc [http://theory.cm.utexas.edu/eon/akmc.html] (G. Henkelman)

	Carlos [http://www.win.tue.nl/~johanl/projects/Carlos/] (J. Lukkien)

	chimp [http://www.koders.com/cpp/fid7FA324E3E76DB9874158BE3CF722405FA44AECE8.aspx?s=mdef%3Ainsert] (D. Dooling)

	KMCLib [https://github.com/leetmaa/KMCLib] (M. Leetma)

	Graph Theoretical KMC Code [http://dion.che.udel.edu/downloads/] (D. Vlachos)

	Monty [http://www.vsc.science.ru.nl/deij/monty.html] (SXM Boerrrigter)

	MoCKa [http://www.itcp.kit.edu/deutschmann/288.php] (L. Kunz)

	NASCAM [https://www.unamur.be/sciences/physique/pmr/telechargement/logiciels/nascam] (S. Lucas)

	Spparks [http://spparks.sandia.gov/doc/Manual.html] (S. Plimpton)

	Zacros [http://zacros.org/] (M. Stamatakis)

	What is the relation between kmcos and kmos?

	Initially, the code was named kmos for
kinetic modeling on steroids. However, during the 2020 revitalization and migration to python3, the code’s name was changed kmcos with intention of greater emphasis of the generality of the code.

 Python Module Index

 k

 		 	

 		
 k	

 	[image: -]
 	
 kmcos	

 	
 	
 kmcos.cli	

 	
 	
 kmcos.io	

 	
 	
 kmcos.run	

 	
 	
 kmcos.types	

 	
 	
 kmcos.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W
 | X

_

 	
 	__call__() (kmcos.run.Model_Parameters method)

 	(kmcos.run.Model_Rate_Constants method)

 	_adjust_database() (kmcos.run.KMC_Model method)

 	
 	_get_configuration() (kmcos.run.KMC_Model method)

 	_put() (kmcos.run.KMC_Model method)

 	_set_configuration() (kmcos.run.KMC_Model method)

A

 	
 	add_layer() (kmcos.types.Project method)

 	add_parameter() (kmcos.types.Project method)

 	
 	add_process() (kmcos.types.Project method)

 	add_site() (kmcos.types.Project method)

 	add_species() (kmcos.types.Project method)

B

 	
 	build() (in module kmcos.utils)

 	
 	by_name() (kmcos.run.Model_Rate_Constants method)

C

 	
 	ConditionAction (class in kmcos.types)

 	
 	Coord (class in kmcos.types)

 	create_configuration_plot() (kmcos.run.KMC_Model method)

D

 	
 	deallocate() (kmcos.run.KMC_Model method)

 	do_acc_steps() (kmcos.run.KMC_Model method)

 	do_steps() (kmcos.run.KMC_Model method)

 	
 	do_steps_time() (kmcos.run.KMC_Model method)

 	double() (kmcos.run.KMC_Model method)

 	dump_config() (kmcos.run.KMC_Model method)

E

 	
 	evaluate_kind_values() (in module kmcos.utils)

 	export_movie() (kmcos.run.KMC_Model method)

 	
 	export_picture() (kmcos.run.KMC_Model method)

 	export_source() (in module kmcos.io)

 	export_xml() (in module kmcos.io)

G

 	
 	generate_coord() (kmcos.types.LayerList method)

 	generate_coord_set() (kmcos.types.LayerList method)

 	get_ase_constructor() (in module kmcos.utils)

 	get_atoms() (kmcos.run.KMC_Model method)

 	get_avail() (kmcos.run.KMC_Model method)

 	get_backend() (kmcos.run.KMC_Model method)

 	get_global_configuration() (kmcos.run.KMC_Model method)

 	get_local_configurations() (kmcos.run.KMC_Model method)

 	
 	get_next_kmc_step() (kmcos.run.KMC_Model method)

 	get_occupation_header() (kmcos.run.KMC_Model method)

 	get_param_header() (kmcos.run.KMC_Model method)

 	get_parameters() (kmcos.types.Project method)

 	get_processes() (kmcos.types.Project method)

 	get_species_coordinates() (kmcos.run.KMC_Model method)

 	get_speciess() (kmcos.types.Project method)

 	get_std_sampled_data() (kmcos.run.KMC_Model method)

 	get_tof_header() (kmcos.run.KMC_Model method)

H

 	
 	halve() (kmcos.run.KMC_Model method)

I

 	
 	import_xml_file() (kmcos.types.Project method)

 	
 	inverse() (kmcos.run.Model_Rate_Constants method)

K

 	
 	KMC_Model (class in kmcos.run)

 	kmcos (module), [1]

 	kmcos.cli (module)

 	
 	kmcos.io (module)

 	kmcos.run (module)

 	kmcos.types (module)

 	kmcos.utils (module)

L

 	
 	Layer (class in kmcos.types)

 	LayerList (class in kmcos.types)

 	
 	LinearParameter (class in kmcos.run)

 	load_config() (kmcos.run.KMC_Model method)

 	LogParameter (class in kmcos.run)

M

 	
 	main() (in module kmcos.cli)

 	Meta (class in kmcos.types)

 	Model_Parameters (class in kmcos.run)

 	
 	Model_Rate_Constants (class in kmcos.run)

 	ModelParameter (class in kmcos.run)

 	ModelRunner (class in kmcos.run)

N

 	
 	nr2site() (kmcos.run.KMC_Model method)

P

 	
 	Parameter (class in kmcos.types)

 	parse_and_add_process() (kmcos.types.Project method)

 	parse_process() (kmcos.types.Project method)

 	peek() (kmcos.run.KMC_Model method)

 	play_ascii_movie() (kmcos.run.KMC_Model method)

 	plot_configuration() (kmcos.run.KMC_Model method)

 	pos (kmcos.types.Coord attribute)

 	post_mortem() (kmcos.run.KMC_Model method)

 	PressureParameter (class in kmcos.run)

 	
 	print_accum_rate_summation() (kmcos.run.KMC_Model method)

 	print_adjustable_parameters() (kmcos.run.KMC_Model method)

 	print_coverages() (kmcos.run.KMC_Model method)

 	print_kmc_state() (kmcos.run.KMC_Model method)

 	Process (class in kmcos.types)

 	ProcListWriter (class in kmcos.io)

 	procstat_normalized() (kmcos.run.KMC_Model method)

 	procstat_pprint() (kmcos.run.KMC_Model method)

 	Project (class in kmcos.types)

 	put() (kmcos.run.KMC_Model method)

R

 	
 	run() (kmcos.run.KMC_Model method)

 	(kmcos.run.ModelRunner method)

S

 	
 	show() (kmcos.run.KMC_Model method)

 	show_ascii_picture() (kmcos.run.KMC_Model method)

 	Site (class in kmcos.types)

 	
 	Species (class in kmcos.types)

 	split_sequence() (in module kmcos.utils)

 	start() (kmcos.run.KMC_Model method)

T

 	
 	TemperatureParameter (class in kmcos.run)

V

 	
 	validate_model() (kmcos.types.Project method)

 	
 	view() (kmcos.run.KMC_Model method)

W

 	
 	write_proclist() (kmcos.io.ProcListWriter method)

 	
 	write_py() (in module kmcos.utils)

 	write_settings() (kmcos.io.ProcListWriter method)

X

 	
 	xml() (kmcos.run.KMC_Model method)

 Kmcos has some non-python dependencies so cannot be installed with only pip. It is recommended to install kmcos on Ubuntu within a python virtual environment, and our instructions are written accordingly.
If you plan to use a windows machine, it is recommended to first get VirtualBox [https://www.virtualbox.org/wiki/Downloads]
and to make an Ubuntu virtualmachine [https://www.freecodecamp.org/news/how-to-install-ubuntu-with-oracle-virtualbox/] .

Making a Python Virtual Environment for kmcos within Ubuntu

Using a virtual python environment for both installation and for simulations avoids python software conflicts. Here are instructions for installing a python virtual environment.

OPTION 1 (python3-venv):

cd ~
sudo apt-get update
sudo apt-get install python3
sudo apt-get install python3-venv
python3 -m pip install --upgrade pip
python3 -m venv ~/VENV/kmcos
source ~/VENV/kmcos/bin/activate

To use kmcos after this installation, you will need to use that source activation command from the terminal each time. When finished, you can exit this virtualenv by typing ‘deactivate’.

OPTION 2 (virtualenv):

cd ~
sudo apt-get update
sudo apt-get install python3
sudo apt-get install virtualenv
python3 -m pip install --upgrade pip
virtualenv -p /usr/bin/python3 ~/VENV/kmcos #If this fails, try typing "which python3" and replace the path "/usr/bin/python3" with what your system provides.
source ~/VENV/kmcos/bin/activate

To use kmcos after this installation, you will need to use that source activation command from the terminal each time. When finished, you can exit this virtualenv by typing ‘deactivate’. Though you should not need it, you can find more information on virtualenv at this video [https://www.youtube.com/watch?v=N5vscPTWKOk] and the official website [https://virtualenv.pypa.io/en/latest/]

OPTION 3 (anaconda):
If you will be installing kmcos in an anaconda environment, you can make a new environment named ‘kmcos’ from anaconda navigator. See for example this link [https://medium.com/cluj-school-of-ai/python-environments-management-in-anaconda-navigator-ad2f0741eba7] .

Virtual environment installations do not require the “–user” tag as the python packages are ‘sandboxed’ during installation. Accordingly, the “–user” tags are commented out in our further instructions.

Installing kmcos on Ubuntu Linux

If you are a typical user, first make sure you are in your virtual environment (after preparation by the above instructions):

source ~/VENV/kmcos/bin/activate

The easiest way to install kmcos is to use one of the automatic installers:

cd ~
sudo apt-get install git
git clone https://github.com/kmcos/kmcos-installers
cd kmcos-installers
python3 -m pip install --upgrade pip
bash install-kmcos-linux-venv.bash #use 'bash install-kmcos-linux-user.bash' if you are not using a venv. #For the develop branch, use install-kmcos-linux-venv-develop.bash or install-kmcos-linux-user-develop.bash

For personal computer usage (not on a supercomputer), it is a good idea to also run the following command, which will add the kmcos viewer and movie maker:

bash install-kmcos-complete-linux-venv-Ubuntu20.bash #this is for Ubuntu20. There is also an Ubuntu18 version.

If everything has gone well, you have a minimal installation completed! And now you are done and can leave this installation page!

If the above simple way does not work for you, you will need to go through the commands manually one at a time from installation on a venv [https://github.com/kmcos/kmcos-installers/blob/main/install-kmcos-linux-venv.bash] or installation as a user [https://github.com/kmcos/kmcos-installers/blob/main/install-kmcos-linux-user.bash] . A kmcosInstallation directory is created during installation. The files in the kmcosInstallation are no longer needed after installation, but it has exampples in it. So you can you can navigate into that directory and go through the examples, or you can remove the kmcosInstallation directory using ‘rm -r directoryname’.

When doing kmcos upgrades, you will not need to use git again. For kmcos upgrades, you can just use the earlier pip command:

pip3 install kmcos[MINIMAL] --upgrade #--user

(Optional) If you would like to use the kmcos view capability, you will need to install some non-python dependencies and then kmcos complete:

sudo apt-get install python-ase
sudo apt-get install python3-gi
pip3 install ase #--user
pip3 install kmcos[COMPLETE] --upgrade #--user

If the last command of ‘pip3 install kmcos[COMPLETE] –upgrade #–user’ gives an error before finishing, try the command a second time.

Installing kmcos on Fedora Linux (typically inside a virtual environment)

Install developement tools gcc and fortran.

For fedora 32+

sudo dnf groupinstall "Development Tools" "Development Libraries"
sudo dnf install gcc-gfortran

For fedora below 32

sudo dnf groupinstall @development-tools @development-libraries
sudo dnf install gcc-gfortran

Make a virtual environment for the kmcos and activate it:

python3 -m venv ~/VENV/kmcos
source ~/VENV/kmcos/bin/activate

Clone the kmcos github repository in a folder you want and change to the kmcos directory:

git clone https://github.com/kmcos/kmcos.git
cd kmcos

Install the python package requirements and finally the kmcos package:

pip3 install numpy lxml ase matplotlib UnitTesterSG CiteSoft IPython
python3 setup.py install

Installation on openSUSE 12.1 Linux (Deprecated Instructions)

On a recent openSUSE some dependencies are distributed a little
different but nevertheless doable. We start by install some
package from the repositories:

sudo zypper install libgfortran46, python-lxml, python-matplotlib, \
 python-numpy, python-numpy-devel, python-goocanvas,
 python-imaging

And two more packages SUSE packages have to be fetched from the
openSUSE build service [https://build.opensuse.org/]

	gazpacho [https://build.opensuse.org/package/files?package=gazpacho&project=home%3Ajoshkress]

	python-kiwi [https://build.opensuse.org/package/files?package=python-kiwi&project=home%3Ajoshkress]

For each one just download the *.tar.bz2 files. Unpack them and inside
run:

python setup.py install

In the same vein you can install ASE. Download a recent version
from the GitLab website [https://gitlab.com/ase/ase/repository/archive.zip?ref=master]
unzip it and install it with:

python setup.py install

Installation on openSUSE 13.1 Linux (Deprecated Instructions)

In order to use the editor GUI you will want to install python-kiwi (not KIWI)
and right now you can find a recent build here [https://build.opensuse.org/package/show/home:leopinheiro/python-kiwi] .

Installation on Mac OS X 10.10 or above (Deprecated Instructions)

There is more than one way to get required dependencies. MacPorts was previously tested and worked.

As of 2022, the MacPorts way does not seem to be working and the virtual machine way is recommended.

The Virtual Machine Way:

Needed to use Ubuntu 20.04 (Using Ubuntu 22 did not work).

Guest additions was not working on the mac. So needed to do below in addition to the instructions in the intro2kmcos doc.

	Needed to find Virtual Box with finder, right click on the Virtual Box application, show files / show contents, needed to find the VirtualBox.iso file, copy it out to a regular MacOS directory.

	Perl was not working, so needed to do the following:

sudo apt-get update
sudo apt-get install build-essential gcc make perl dkms

That worked, then rebooted Ubuntu.

	Navigated to the virtual disc of the guest additions CD (virtual compact disc):

bash autorun.sh

Then was able to use the virtual machine as well as install kmcos normally.

The MacPorts Way:

	
	Get MacPorts

	Search for MacPorts online, you’ll need to install Xcode in the process

	Install Python, lxml, numpy, ipython, ASE, gcc48. I assume you are using Python 2.7.
kmcos has not been thoroughly tested with Python 3.X, yet, but should not be too hard.

Having MacPorts this can be as simple as:

sudo port install -v py27-ipython
sudo port select --set ipython py27-ipython

sudo port install gcc48
sudo port select --set gcc mp-gcc48 # need to that f2py finds a compiler

sudo port install py27-readline
sudo port install py27-goocanvas
sudo port install py27-lxml
sudo port install kiwi
possibly more ...

if you install these package manually, skip pip :-)
sudo port install py27-pip
sudo port select --set pip pip27

pip install python-ase --user
pip install python-kmcos --user

Installation on windows

Direct installation on windows is currently not supported, but it is possible to use either “WSL” or to use Ubuntu on a virtualbox. It is recommended to download virtualbox, to install Ubuntu, and then follow the Ubuntu installation instructions in the intro2kmcos pdf file here: https://github.com/kmcos/intro2kmcos. You may need to adjust the resolution to work effectively.

If you prefer to use WSL rather than Virtualbox, you will need to install WSL Ubuntu. Press the “start menu” button. Type “Windows Powershell” but don’t press enter: Use run as administrator. Then enter:

wsl --install -d Ubuntu

Now, you can close the Powershell window. Within ubuntu, use:

sudo apt update
sudo apt install x11-apps

From the terminal, type:

xeyes &

With windows 11 and higher, you may see a GUI pop up. If you do not, then you probably will not be able to use a GUI with WSL, and the kmcos export_movie feature also will not work.

For future reference: “cd ~” will take you to the home (default) place for working in WSL Ubuntu, while “cd /” will take you to the root directory of WSL Ubuntu.

For sharing files, “cd /mnt/c” will let you access files on to go to the windows C drive.
By going to mnt/c, you can move files back and forth between Ubuntu directories and the Windows directories.

Now that you have WSL working with Ubuntu, follow the regular instructions from the top of this Installation page. Going forward, you can start WSL Ubuntu by finding Ubuntu in the windows start menu.

Installing JANAF Thermochemical Tables

You can conveniently use gas phase chemical potentials
inserted in rate constant expressions using
JANAF Thermochemical Tables. A couple of molecules
are automatically supported.

Fortunately manual installation is easy.
Just create a directory called janaf_data
anywhere on your python path. To see the directories on your python
path run:

python -c"import sys; print(sys.path)"

Inside the janaf_data directory has to be a file
named __init__.py, so that python recognizes it as a module:

touch __init__.py

Then copy all needed data files from the
NIST website [https://janaf.nist.gov/]
in the tab-delimited text format
to the janaf_data directory. To download the ASCII file,
search for your molecule. In the results page click on ‘view’
under ‘JANAF Table’ and click on ‘Download table in tab-delimited text format.’
at the bottom of that page.

Todo

test installation on other platforms

kmcos/base

The base kMC module, which implements the kMC method on a [image: d = 1]
lattice. Virtually any lattice kMC model can be build on top of this.
The methods offered are:

	de/allocation of memory

	book-keeping of the lattice configuration and all available processes

	updating and tracking kMC time, kMC step and wall time

	saving and reloading the current state

	determine the process and site to be executed

base/accum_rates

Stores the accumulated rate constant multiplied with the number
of sites available for that process to be used by determine_procsite.
Let [image: \mathbf{c}] be the rate constants [image: \mathbf{n}]
the number of available sites, and [image: \mathbf{a}]
the accumulated rates, then [image: a_{i}]
is calculated according to [image: a_{i}=\sum_{j=1}^{i} c_{j} n_{j}].

base/add_proc

The main idea of this subroutine is described in del_proc. Adding one
process to one capability is programmatically simpler since we can just
add it to the end of the respective array in avail_sites.

	proc positive integer number that represents the process to be added.

	site positive integer number that represents the site to be manipulated

base/allocate_system

Allocates all book-keeping structures and stores
local copies of system name and size(s):

	systen_name identifier of this simulation, used as name of punch file

	volume the total number of sites

	nr_of_proc the total number of processes

base/assertion_fail

Function that shall be used by all parts of the program to print a
proper message in case some assertion fails.

	a condition that is supposed to hold true

	r message that is printed to the poor user in case it fails

base/avail_sites

Main book-keeping array that stores for each process the sites
that are available and for each site the address
in this very array. The meaning of the fields are:

avail_sites(proc, field, switch)

where:

	proc – refers to a process in the process list

	the field within the process, but the meaning differs as explained
under ‘switch’

	switch – can be either 1 or 2 and switches between
(1) the actual numbers of the sites, which are available
and filled in from the left but in whatever order they come
or (2) the location where the site is stored in (1).

base/can_do

Returns true if ‘site’ can do ‘proc’ right now

	proc integer representing the requested process.

	site integer representing the requested site.

	can writeable boolean, where the result will be stored.

base/deallocate_system

Deallocate all allocatable arrays: avail_sites, lattice, rates,
accum_rates, integ_rates, procstat.

none

base/del_proc

del_proc delete one process from the main book-keeping array
avail_sites. These book-keeping operations happen in O(1) time with the
help of some more book-keeping overhead. avail_sites stores for each
process all sites that are available. The array for each process is
filled from the left, but sites generally not ordered. With this
determine_procsite can effectively pick the next site and process. On
the other hand a second array (avail_sites(:,:,2)) holds for each
process and each site, the location where it is stored in
avail_site(:,:,1). If a site needs to be removed this subroutine first
looks up the location via avail_sites(:,:,1) and replaces it with the
site that is stored as the last element for this process.

	proc positive integer that states the process

	site positive integer that encodes the site to be manipulated

base/determine_procsite

Expects two random numbers between 0 and 1 and determines the
corresponding process and site from accum_rates and avail_sites.
Technically one random number would be sufficient but to circumvent
issues with wrong interval_search_real implementation or rounding
errors I decided to take two random numbers:

	ran_proc Random real number from [image: \in[0,1]] that selects the next process

	ran_site Random real number from [image: \in[0,1]] that selects the next site

	proc Return integer [image: \in[1,\mathrm{nr_of_proc}]

	site Return integer [image: \in [1,\mathrm{volume}]

base/get_accum_rate

Return accumulated rate at a given process.

	proc_nr integer representing the requested process.

	return_accum_rate writeable real, where the requested accumulated rate will be stored.

base/get_avail_site

Return field from the avail_sites database

	proc_nr integer representing the requested process.

	field integer for the site at question

	switch 1 or 2 for site or storage location

base/get_integ_rate

Return integrated rate at a given process.

	proc_nr integer representing the requested process.

	return_integ_rate writeable real, where the requested integrated rate will be stored.

base/get_kmc_step

Return the current kmc_step

	kmc_step Writeable integer

base/get_kmc_time

Returns current kmc_time as rdouble real as defined in kind_values.f90.

	return_kmc_time writeable real, where the kmc_time will be stored.

base/get_kmc_time_step

Returns current kmc_time_step (the time increment).

	return_kmc_step writeable real, where the kmc_time_step will be stored.

base/get_kmc_volume

Return the total number of sites.

	volume Writeable integer.

base/get_nrofsites

Return how many sites are available for a certain process.
Usually used for debugging

	proc integer representing the requested process

	return_nrofsites writeable integer, where nr of sites gets stored

base/get_procstat

Return process counter for process proc as integer.

	proc integer representing the requested process.

	return_procstat writeable integer, where the process counter will be stored.

base/get_rate

Return rate of given process.

	proc_nr integer representing the requested process.

	return_rate writeable real, where the requested rate will be stored.

base/get_species

Return the species that occupies site.

	site integer representing the site

base/get_system_name

Return the systems name, that was specified with base/allocate_system

	system_name Writeable string of type character(len=200).

base/get_walltime

Return the current walltime.

	return_walltime writeable real where the walltime will be stored.

base/increment_procstat

Increment the process counter for process proc by one.

	proc integer representing the process to be increment.

base/integ_rates

Stores the time-integrated rates (non-normalized to surface area)
Used to determine reaction rates, i.e. average number of reactions
per unit surface and time.
Let [image: \mathbf{a}] the integrated rates, [image: \mathbf{c}] be the
rate constants, [image: \mathbf{n}_i] the number of available sites
during kMC-time interval i, [image: \{\Delta t_i\}] the corresponding
timesteps then [image: a_{i}(t)] at the time [image: t=\sum_{i=1}\Delta t_i]
is calculated according to [image: a_{i}(t)=\sum_{i=1} c_{i} n_{i}\Delta t_i].

base/interval_search_real

This is basically a standard binary search algorithm that expects an array
of ascending real numbers and a scalar real and return the key of the
corresponding field, with the following modification :

	the value of the returned field is equal of larger of the given
value. This is important because the given value is between 0 and the
largest value in the array and otherwise the last field is never
selected.

	if two or more values in the array are identical, the function
return the index of the leftmost of those field. This is important
because having field with identical values means that all field except
the leftmost one do not contain any sites. Refer to
update_accum_rate to understand why.

	the value of the returned field may no be zero. Therefore the index
the to be equal or larger than the first non-zero field.

However: as everyone knows the binary search is trickier than it appears
at first site especially real numbers. So intensive testing is
suggested here!

	arr real array of type rsingle (kind_values.f90) in monotonically (not strictly) increasing order

	value real positive number from [0, max_arr_value]

base/kmc_step

Number of kMC steps executed.

base/kmc_time

Simulated kMC time in this run in seconds.

base/kmc_time_step

The time increment of the current kMC step.

base/lattice

Stores the actual physical lattice in a 1d array, where the value
on each slot represents the species on that site.

Species constants can be conveniently defined
in lattice_… and later used directly in the process list.

base/nr_of_proc

Total number of available processes.

base/nr_of_sites

Stores the number of sites available for each process.

base/procstat

Stores the total number of times each process has been executed
during one simulation.

base/rates

Stores the rate constants for each process in s^-1.

base/reload_system

Restore state of simulation from *.reload file as saved by
save_system(). This function also allocates the system’s memory
so calling allocate_system again, will cause a runtime failure.

	system_name string of 200 characters which will make the reload_system look for a file called ./<system_name>.reload

	reloaded logical return variable, that is .true. reload of system could be completed successfully, and .false. otherwise.

base/replace_species

Replaces the species at a given site with new_species, given
that old_species is correct, i.e. identical to the site that
is already there.

	site integer representing the site

	old_species integer representing the species to be removed

	new_species integer representing the species to be placed

base/reset_site

This function is a higher-level function to reset a site
as if it never existed. To achieve this the species
is set to null_species and all available processes
are stripped from the site via del_proc.

	site integer representing the requested site.

	species integer representing the species that ought to be at the site, for consistency checks

base/save_system

save_system stores the entire system information in a simple ASCII
filed names <system_name>.reload. All fields except avail_sites are
stored in the simple scheme:

variable value

In the case of array variables, multiple values are seperated by one or
more spaces, and the record is terminated with a newline. The variable
avail_sites is treated slightly differently, since printed on a single
line it is almost impossible to interpret from the ASCII files. Instead
each process starts a new line, and the first number on the line stands
for the process number and the remaining fields, hold the values.

none

base/set_kmc_time

Sets current kmc_time as rdouble real as defined in kind_values.f90.

	new readable real, that the kmc time will be set to

base/set_rate_const

Allows to set the rate constant of the process with the number proc_nr.

	proc_n The process number as defined in the corresponding proclist_ module.

	rate the rate in [image: s^{-1}]

base/set_system_name

Set the systems name. Useful in conjunction with base.save_system
to save *.reload files under a different name than the default one.

	system_name Readable string of type character(len=200).

base/start_time

CPU time spent in simulation at least reload.

base/system_name

Unique indentifier of this simulation to be used for restart files.
This name should not contain any characters that you don’t want to
have in a filename either, i.e. only [A-Za-z0-9_-].

base/update_accum_rate

Updates the vector of accum_rates.

none

base/update_clocks

Updates walltime, kmc_step and kmc_time.

	ran_time Random real number [image: \in [0,1]]

base/update_integ_rate

Updates the vector of integ_rates.

none

base/volume

Total number of sites.

base/walltime

Total CPU time spent on this simulation.

	Entry point module for the command-line

	interface. The kmcos executable should be
on the program path, import this modules
main function and run it.

To call kmcos command as you would from the shell,
use

kmcos.cli.main('...')

Every command can be shortened as long as it is non-ambiguous, e.g.

kmcos ex <xml-file>

instead of

kmcos export <xml-file>

etc.

You may also use syntax kmcos.export(”…”) for any cli command.

List of commands

	kmcos benchmark

	Run 1 mio. kMC steps on model in current directory
and report runtime.

	kmcos build

	Build kmc_model.so from *f90 files in the
current directory.

	Additional Parameters ::

	
	-d/–debug

	Turn on assertion statements in F90 code

	-n/–no-compiler-optimization

	Do not send optimizing flags to compiler.

	kmcos edit <xml-file>

	Open the kmcos xml-file in a GUI to edit
the model.

	kmcos export <xml-file> [<export-path>]

	Take a kmcos xml-file and export all generated
source code to the export-path. There try to
build the kmc_model.so.

Additional Parameters

-s/--source-only
 Export source only and don't build binary

-b/--backend (local_smart|lat_int)
 Choose backend. Default is "local_smart".
 lat_int is EXPERIMENTAL and not made
 for production, yet.

-t/--temp_acc
 Use temporal acceleration scheme.
 Builds the modules base_acc.f90, lattice_acc.mpy,
 proclist_constants_acc.mpy and
 proclist_generic_subroutines_acc.mpy.
 Default is false.

-d/--debug
 Turn on assertion statements in F90 code.
 (Only active in compile step)

 --acf
 Build the modules base_acf.f90 and proclist_acf.f90. Default is false.
 This both modules contain functions to calculate ACF (autocorrelation function) and MSD (mean squared displacement).

-n/--no-compiler-optimization
 Do not send optimizing flags to compiler.

	kmcos help <command>

	Print usage information for the given command.

	kmcos help all

	Display documentation for all commands.

	kmcos import <xml-file>

	Take a kmcos xml-file and open an ipython shell
with the project_tree imported as pt.

	kmcos rebuild

	Export code and rebuild binary module from XML
information included in kmc_settings.py in
current directory.

	Additional Parameters ::

	
	-d/–debug

	Turn on assertion statements in F90 code

	kmcos run

	
	Open an interactive shell and create a KMC_Model in it

	run == shell

	kmcos settings-export <xml-file> [<export-path>]

	Take a kmcos xml-file and export kmc_settings.py
to the export-path.

	kmcos shell

	
	Open an interactive shell and create a KMC_Model in it

	run == shell

	kmcos version

	Print version number and exit.

	kmcos view

	Take a kmc_model.so and kmc_settings.py in the
same directory and start to simulate the
model visually.

	Additional Parameters ::

	
	-v/–steps-per-frame <number>

	Number of steps per frame

	kmcos xml

	Print xml representation of model to stdout

kmcos/lattice

Implements the mappings between the real space lattice
and the 1-D lattice, which kmcos/base operates on.
Furthermore replicates all geometry specific functions of kmcos/base
in terms of lattice coordinates.
Using this module each site can be addressed with 4-tuple
(i, j, k, n) where i, j, k define the unit cell and
n the site within the unit cell.

lattice/allocate_system

Allocates system, fills mapping cache, and
checks whether mapping is consistent

none

lattice/calculate_lattice2nr

Maps all lattice coordinates onto a continuous
set of integer [image: \in [1,volume]]

	site integer array of size (4) a lattice coordinate

lattice/calculate_nr2lattice

Maps a continuous set of
of integers [image: \in [1,volume]] to a
4-tuple representing a lattice coordinate

	nr integer representing the site index

lattice/deallocate_system

Deallocates system including mapping cache.

none

lattice/default_layer

The layer in which the model is initially in by default (only relevant for multi-lattice models).

lattice/lattice2nr

Caching array holding the mapping from index to lattice
coordinate: (x, y, z, n) -> i.

lattice/model_dimension

Store the number of dimensions of this model: 1, 2, or 3

lattice/nr2lattice

Caching array holding the mapping from index to lattice
coordinate: i -> (x, y, z, n).

lattice/nr_of_layers

Constant storing the number of layers (for multi-lattice models > 1)

lattice/site_positions

The positions of (adsorption) site in the unit cell in
fractional coordinates.

lattice/spuck

spuck = Sites Per Unit Cell Konstant
The number of sites per unit cell, i.e. for coordinate
notation (x, y, n) this is the maximum value of n.

lattice/system_size

Stores the current size of the allocated system lattice (x, y, z)
in an integer array. In low-dimensional system, corresponding entries will be set to 1.
Note that this should be thought of as a read-only variable. Changing its value at model
runtime will not the indented effect of actually changing the simulated lattice.
The definitive location for custom lattice size is simulation_size in kmc_settings.py.

If the system size shall be changed programmatically, it needs to happen before the KMC_Model
is instantiated and Fortran array are allocated accordingly, like to

#!/usr/bin/env python

import kmc_settings
import kmcos.run

kmc_settings.simulation_size = 9, 9, 4

	with kmcos.run.KMC_Model() as model:

	print(model.lattice.system_size)))`

lattice/unit_cell_size

The dimensions of the unit cell (e.g. in Angstrom) of the
unit cell.

kmcos/proclist

Implements the kMC process list.

proclist/do_kmc_step

Performs exactly one kMC step.
* first update clock
* then configuration sampling step
* last execute process

none

proclist/do_kmc_steps

Performs n kMC step.
If one has to run many steps without evaluation
do_kmc_steps might perform a little better.
* first update clock
* then configuration sampling step
* last execute process

n : Number of steps to run

proclist/get_kmc_step

Determines next step without executing it.

none

proclist/get_occupation

Evaluate current lattice configuration and returns
the normalized occupation as matrix. Different species
run along the first axis and different sites run
along the second.

none

proclist/init

Allocates the system and initializes all sites in the given
layer.

	input_system_size number of unit cell per axis.

	system_name identifier for reload file.

	layer initial layer.

	no_banner [optional] if True no copyright is issued.

proclist/initialize_state

Initialize all sites and book-keeping array
for the given layer.

	layer integer representing layer

proclist/run_proc_nr

Runs process proc on site nr_site.

	proc integer representing the process number

	nr_site integer representing the site

kmcos/base

The base kMC module, which implements the kMC method on a [image: d = 1]
lattice. Virtually any lattice kMC model can be build on top of this.
The methods offered are:

	de/allocation of memory

	book-keeping of the lattice configuration and all available processes

	updating and tracking kMC time, kMC step and wall time

	saving and reloading the current state

	determine the process and site to be executed

base/accum_rates

Stores the accumulated rate constant multiplied with the number
of sites available for that process to be used by determine_procsite.
Let [image: \mathbf{c}] be the rate constants [image: \mathbf{n}]
the number of available sites, and [image: \mathbf{a}]
the accumulated rates, then [image: a_{i}]
is calculated according to [image: a_{i}=\sum_{j=1}^{i} c_{j} n_{j}].

base/add_proc

The main idea of this subroutine is described in del_proc. Adding one
process to one capability is programmatically simpler since we can just
add it to the end of the respective array in avail_sites.

	proc positive integer number that represents the process to be added.

	site positive integer number that represents the site to be manipulated

base/allocate_system

Allocates all book-keeping structures and stores
local copies of system name and size(s):

	systen_name identifier of this simulation, used as name of punch file

	volume the total number of sites

	nr_of_proc the total number of processes

base/assertion_fail

Function that shall be used by all parts of the program to print a
proper message in case some assertion fails.

	a condition that is supposed to hold true

	r message that is printed to the poor user in case it fails

base/avail_sites

Main book-keeping array that stores for each process the sites
that are available and for each site the address
in this very array. The meaning of the fields are:

avail_sites(proc, field, switch)

where:

	proc – refers to a process in the process list

	the field within the process, but the meaning differs as explained
under ‘switch’

	switch – can be either 1 or 2 and switches between
(1) the actual numbers of the sites, which are available
and filled in from the left but in whatever order they come
or (2) the location where the site is stored in (1).

base/can_do

Returns true if ‘site’ can do ‘proc’ right now

	proc integer representing the requested process.

	site integer representing the requested site.

	can writeable boolean, where the result will be stored.

base/deallocate_system

Deallocate all allocatable arrays: avail_sites, lattice, rates,
accum_rates, procstat.

none

base/del_proc

del_proc delete one process from the main book-keeping array
avail_sites. These book-keeping operations happen in O(1) time with the
help of some more book-keeping overhead. avail_sites stores for each
process all sites that are available. The array for each process is
filled from the left, but sites generally not ordered. With this
determine_procsite can effectively pick the next site and process. On
the other hand a second array (avail_sites(:,:,2)) holds for each
process and each site, the location where it is stored in
avail_site(:,:,1). If a site needs to be removed this subroutine first
looks up the location via avail_sites(:,:,1) and replaces it with the
site that is stored as the last element for this process.

	proc positive integer that states the process

	site positive integer that encodes the site to be manipulated

base/determine_procsite

Expects two random numbers between 0 and 1 and determines the
corresponding process and site from accum_rates and avail_sites.
Technically one random number would be sufficient but to circumvent
issues with wrong interval_search_real implementation or rounding
errors I decided to take two random numbers:

	ran_proc Random real number from [image: \in[0,1]] that selects the next process

	ran_site Random real number from [image: \in[0,1]] that selects the next site

	proc Return integer [image: \in[1,\mathrm{nr_of_proc}]

	site Return integer [image: \in [1,\mathrm{volume}]

base/get_accum_rate

Return accumulated rate at a given process.

	proc_nr integer representing the requested process.

	return_accum_rate writeable real, where the requested accumulated rate will be stored.

base/get_avail_site

Return field from the avail_sites database

	proc_nr integer representing the requested process.

	field integer for the site at question

	switch 1 or 2 for site or storage location

base/get_integ_rate

Return integrated rate at a given process.

	proc_nr integer representing the requested process.

	return_integ_rate writeable real, where the requested integrated rate will be stored.

base/get_kmc_step

Return the current kmc_step

	kmc_step Writeable integer

base/get_kmc_time

Returns current kmc_time as rdouble real as defined in kind_values.f90.

	return_kmc_time writeable real, where the kmc_time will be stored.

base/get_kmc_time_step

Returns current kmc_time_step (the time increment).

	return_kmc_step writeable integer, where the kmc_time_step will be stored.

base/get_kmc_volume

Return the total number of sites.

	volume Writeable integer.

base/get_nrofsites

Return how many sites are available for a certain process.
Usually used for debugging

	proc integer representing the requested process

	return_nrofsites writeable integer, where nr of sites gets stored

base/get_procstat

Return process counter for process proc as integer.

	proc integer representing the requested process.

	return_procstat writeable integer, where the process counter will be stored.

base/get_rate

Return rate of given process.

	proc_nr integer representing the requested process.

	return_rate writeable real, where the requested rate will be stored.

base/get_species

Return the species that occupies site.

	site integer representing the site

base/get_system_name

Return the systems name, that was specified with base/allocate_system

	system_name Writeable string of type character(len=200).

base/get_walltime

Return the current walltime.

	return_walltime writeable real where the walltime will be stored.

base/increment_procstat

Increment the process counter for process proc by one.

	proc integer representing the process to be increment.

base/integ_rates

Stores the time-integrated rates (non-normalized to surface area)
Used to determine reaction rates, i.e. average number of reactions
per unit surface and time.
Let [image: \mathbf{a}] the integrated rates, [image: \mathbf{c}] be the
rate constants, [image: \mathbf{n}_i] the number of available sites
during kMC-time interval i, [image: \{\Delta t_i\}] the corresponding
timesteps then [image: a_{i}(t)] at the time [image: t=\sum_{i=1}\Delta t_i]
is calculated according to [image: a_{i}(t)=\sum_{i=1} c_{i} n_{i}\Delta t_i].

base/interval_search_real

This is basically a standard binary search algorithm that expects an array
of ascending real numbers and a scalar real and return the key of the
corresponding field, with the following modification :

	the value of the returned field is equal of larger of the given
value. This is important because the given value is between 0 and the
largest value in the array and otherwise the last field is never
selected.

	if two or more values in the array are identical, the function
return the index of the leftmost of those field. This is important
because having field with identical values means that all field except
the leftmost one do not contain any sites. Refer to
update_accum_rate to understand why.

	the value of the returned field may no be zero. Therefore the index
the to be equal or larger than the first non-zero field.

However: as everyone knows the binary search is trickier than it appears
at first site especially real numbers. So intensive testing is
suggested here!

	arr real array of type rsingle (kind_values.f90) in monotonically (not strictly) increasing order

	value real positive number from [0, max_arr_value]

base/kmc_step

Number of kMC steps executed.

base/kmc_time

Simulated kMC time in this run in seconds.

base/kmc_time_step

The time increment of the current kMC step.

base/lattice

Stores the actual physical lattice in a 1d array, where the value
on each slot represents the species on that site.

Species constants can be conveniently defined
in lattice_… and later used directly in the process list.

base/nr_of_proc

Total number of available processes.

base/nr_of_sites

Stores the number of sites available for each process.

base/procstat

Stores the total number of times each process has been executed
during one simulation.

base/rates

Stores the rate constants for each process in s^-1.

base/reload_system

Restore state of simulation from *.reload file as saved by
save_system(). This function also allocates the system’s memory
so calling allocate_system again, will cause a runtime failure.

	system_name string of 200 characters which will make the reload_system look for a file called ./<system_name>.reload

	reloaded logical return variable, that is .true. reload of system could be completed successfully, and .false. otherwise.

base/replace_species

Replaces the species at a given site with new_species, given
that old_species is correct, i.e. identical to the site that
is already there.

	site integer representing the site

	old_species integer representing the species to be removed

	new_species integer representing the species to be placed

base/reset_site

This function is a higher-level function to reset a site
as if it never existed. To achieve this the species
is set to null_species and all available processes
are stripped from the site via del_proc.

	site integer representing the requested site.

	species integer representing the species that ought to be at the site, for consistency checks

base/save_system

save_system stores the entire system information in a simple ASCII
filed names <system_name>.reload. All fields except avail_sites are
stored in the simple scheme:

variable value

In the case of array variables, multiple values are seperated by one or
more spaces, and the record is terminated with a newline. The variable
avail_sites is treated slightly differently, since printed on a single
line it is almost impossible to interpret from the ASCII files. Instead
each process starts a new line, and the first number on the line stands
for the process number and the remaining fields, hold the values.

none

base/set_kmc_time

Sets current kmc_time as rdouble real as defined in kind_values.f90.

	new readable real, that the kmc time will be set to

base/set_rate_const

Allows to set the rate constant of the process with the number proc_nr.

	proc_n The process number as defined in the corresponding proclist_ module.

	rate the rate in [image: s^{-1}]

base/set_system_name

Set the systems name. Useful in conjunction with base.save_system
to save *.reload files under a different name than the default one.

	system_name Readable string of type character(len=200).

base/start_time

CPU time spent in simulation at least reload.

base/system_name

Unique indentifier of this simulation to be used for restart files.
This name should not contain any characters that you don’t want to
have in a filename either, i.e. only [A-Za-z0-9_-].

base/update_accum_rate

Updates the vector of accum_rates.

none

base/update_clocks

Updates walltime, kmc_step and kmc_time.

	ran_time Random real number [image: \in [0,1]]

base/update_integ_rate

Updates the vector of integ_rates.

none

base/volume

Total number of sites.

base/walltime

Total CPU time spent on this simulation.

kmcos/kind_values

This module offers kind_values for commonly
used intrinsic types in a platform independent way.

kmcos/lattice

Implements the mappings between the real space lattice
and the 1-D lattice, which kmcos/base operates on.
Furthermore replicates all geometry specific functions of kmcos/base
in terms of lattice coordinates.
Using this module each site can be addressed with 4-tuple
(i, j, k, n) where i, j, k define the unit cell and
n the site within the unit cell.

lattice/allocate_system

Allocates system, fills mapping cache, and
checks whether mapping is consistent

none

lattice/calculate_lattice2nr

Maps all lattice coordinates onto a continuous
set of integer [image: \in [1,volume]]

	site integer array of size (4) a lattice coordinate

lattice/calculate_nr2lattice

Maps a continuous set of
of integers [image: \in [1,volume]] to a
4-tuple representing a lattice coordinate

	nr integer representing the site index

lattice/deallocate_system

Deallocates system including mapping cache.

none

lattice/default_layer

The layer in which the model is initially in by default (only relevant for multi-lattice models).

lattice/lattice2nr

Caching array holding the mapping from index to lattice
coordinate: (x, y, z, n) -> i.

lattice/model_dimension

Store the number of dimensions of this model: 1, 2, or 3

lattice/nr2lattice

Caching array holding the mapping from index to lattice
coordinate: i -> (x, y, z, n).

lattice/nr_of_layers

Constant storing the number of layers (for multi-lattice models > 1)

lattice/site_positions

The positions of (adsorption) site in the unit cell in
fractional coordinates.

lattice/spuck

spuck = Sites Per Unit Cell Konstant
The number of sites per unit cell, i.e. for coordinate
notation (x, y, n) this is the maximum value of n.

lattice/system_size

Stores the current size of the allocated system lattice (x, y, z)
in an integer array. In low-dimensional system, corresponding entries will be set to 1.
Note that this should be thought of as a read-only variable. Changing its value at model
runtime will not the indented effect of actually changing the simulated lattice.
The definitive location for custom lattice size is simulation_size in kmc_settings.py.

If the system size shall be changed programmatically, it needs to happen before the KMC_Model
is instantiated and Fortran array are allocated accordingly, like to

#!/usr/bin/env python3

import kmc_settings
import kmcos.run

kmc_settings.simulation_size = 9, 9, 4

	with kmcos.run.KMC_Model() as model:

	print(model.lattice.system_size)))`

lattice/unit_cell_size

The dimensions of the unit cell (e.g. in Angstrom) of the
unit cell.

proclist/do_kmc_step

Performs exactly one kMC step.
* first update clock
* then configuration sampling step
* last execute process

none

proclist/do_kmc_steps

Performs n kMC step.
If one has to run many steps without evaluation
do_kmc_steps might perform a little better.
* first update clock
* then configuration sampling step
* last execute process

n : Number of steps to run

proclist/do_kmc_steps_time

Performs a variable number of KMC steps to try to match the requested
simulation time as closely as possible without going over. This routine
always performs at least one KMC step before terminating.
* Determine the time step for the next process
* If the time limit is not exceeded, update clocks, rates, execute process,

etc.; otherwise, abort.

Ideally we would use state(seed_size) but that was not working, so hardcoded size.

t : Requested simulation time increment (input)
n : Maximum number of steps to run (input)
num_iter : the number of executed iterations (output)

proclist/get_next_kmc_step

Determines next step without executing it.
However, it changes the position in the random_number
sequence. The python function for
model.get_next_kmc_step() should be used
as it makes additional function calls
to reset the random numbers.
Calling model.proclist.get_next_kmc_step()
is discouraged as that will call this subroutine
directly and will not reset the random numbers.

none

proclist/get_occupation

Evaluate current lattice configuration and returns
the normalized occupation as matrix. Different species
run along the first axis and different sites run
along the second.

none

proclist/get_seed

	Function to retrieve the state of the random number generator to

	permit reproducible restart trajectories.

	None

proclist/init

Allocates the system and initializes all sites in the given
layer.

	input_system_size number of unit cell per axis.

	system_name identifier for reload file.

	layer initial layer.

	no_banner [optional] if True no copyright is issued.

proclist/initialize_state

Initialize all sites and book-keeping array
for the given layer.

	layer integer representing layer

proclist/put_seed

Subroutine to set the state of the random number generator to
permit reproducible restart trajectories.

	state an array of integers with the state of the random number

generator (input)

proclist/seed_gen

Function to transform a single number into a full set of integers
required for initializing the random number generator.

	sd an integer used to seed a simple random number generator

used to generate additional integers for seeding the production random
number generator (input)

kmcos/proclist

Implements the kMC process list.

kmcos/base

The base kMC module, which implements the kMC method on a [image: d = 1]
lattice. Virtually any lattice kMC model can be build on top of this.
The methods offered are:

	de/allocation of memory

	book-keeping of the lattice configuration and all available processes

	updating and tracking kMC time, kMC step and wall time

	saving and reloading the current state

	determine the process and site to be executed

base/accum_rates

Stores the accumulated rate constant multiplied with the number
of sites available for that process to be used by determine_procsite.
Let [image: \mathbf{c}] be the rate constants [image: \mathbf{n}]
the number of available sites, and [image: \mathbf{a}]
the accumulated rates, then [image: a_{i}]
is calculated according to [image: a_{i}=\sum_{j=1}^{i} c_{j} n_{j}].

base/add_proc

The main idea of this subroutine is described in del_proc. Adding one
process to one capability is programmatically simpler since we can just
add it to the end of the respective array in avail_sites.

	proc positive integer number that represents the process to be added.

	site positive integer number that represents the site to be manipulated

base/allocate_system

Allocates all book-keeping structures and stores
local copies of system name and size(s):

	systen_name identifier of this simulation, used as name of punch file

	volume the total number of sites

	nr_of_proc the total number of processes

base/assertion_fail

Function that shall be used by all parts of the program to print a
proper message in case some assertion fails.

	a condition that is supposed to hold true

	r message that is printed to the poor user in case it fails

base/avail_sites

Main book-keeping array that stores for each process the sites
that are available and for each site the address
in this very array. The meaning of the fields are:

avail_sites(proc, field, switch)

where:

	proc – refers to a process in the process list

	the field within the process, but the meaning differs as explained
under ‘switch’

	switch – can be either 1 or 2 and switches between
(1) the actual numbers of the sites, which are available
and filled in from the left but in whatever order they come
or (2) the location where the site is stored in (1).

base/can_do

Returns true if ‘site’ can do ‘proc’ right now

	proc integer representing the requested process.

	site integer representing the requested site.

	can writeable boolean, where the result will be stored.

base/deallocate_system

Deallocate all allocatable arrays: avail_sites, lattice, rates,
accum_rates, integ_rates, procstat.

none

base/del_proc

del_proc delete one process from the main book-keeping array
avail_sites. These book-keeping operations happen in O(1) time with the
help of some more book-keeping overhead. avail_sites stores for each
process all sites that are available. The array for each process is
filled from the left, but sites generally not ordered. With this
determine_procsite can effectively pick the next site and process. On
the other hand a second array (avail_sites(:,:,2)) holds for each
process and each site, the location where it is stored in
avail_site(:,:,1). If a site needs to be removed this subroutine first
looks up the location via avail_sites(:,:,1) and replaces it with the
site that is stored as the last element for this process.

	proc positive integer that states the process

	site positive integer that encodes the site to be manipulated

base/determine_procsite

Expects two random numbers between 0 and 1 and determines the
corresponding process and site from accum_rates and avail_sites.
Technically one random number would be sufficient but to circumvent
issues with wrong interval_search_real implementation or rounding
errors I decided to take two random numbers:

	ran_proc Random real number from [image: \in[0,1]] that selects the next process

	ran_site Random real number from [image: \in[0,1]] that selects the next site

	proc Return integer [image: \in[1,\mathrm{nr_of_proc}]

	site Return integer [image: \in [1,\mathrm{volume}]

base/get_accum_rate

Return accumulated rate at a given process.

	proc_nr integer representing the requested process.

	return_accum_rate writeable real, where the requested accumulated rate will be stored.

base/get_avail_site

Return field from the avail_sites database

	proc_nr integer representing the requested process.

	field integer for the site at question

	switch 1 or 2 for site or storage location

base/get_integ_rate

Return integrated rate at a given process.

	proc_nr integer representing the requested process.

	return_integ_rate writeable real, where the requested integrated rate will be stored.

base/get_kmc_step

Return the current kmc_step

	kmc_step Writeable integer

base/get_kmc_time

Returns current kmc_time as rdouble real as defined in kind_values.f90.

	return_kmc_time writeable real, where the kmc_time will be stored.

base/get_kmc_time_step

Returns current kmc_time_step (the time increment).

	return_kmc_step writeable real, where the kmc_time_step will be stored.

base/get_kmc_volume

Return the total number of sites.

	volume Writeable integer.

base/get_nrofsites

Return how many sites are available for a certain process.
Usually used for debugging

	proc integer representing the requested process

	return_nrofsites writeable integer, where nr of sites gets stored

base/get_procstat

Return process counter for process proc as integer.

	proc integer representing the requested process.

	return_procstat writeable integer, where the process counter will be stored.

base/get_rate

Return rate of given process.

	proc_nr integer representing the requested process.

	return_rate writeable real, where the requested rate will be stored.

base/get_species

Return the species that occupies site.

	site integer representing the site

base/get_system_name

Return the systems name, that was specified with base/allocate_system

	system_name Writeable string of type character(len=200).

base/get_walltime

Return the current walltime.

	return_walltime writeable real where the walltime will be stored.

base/increment_procstat

Increment the process counter for process proc by one.

	proc integer representing the process to be increment.

base/integ_rates

Stores the time-integrated rates (non-normalized to surface area)
Used to determine reaction rates, i.e. average number of reactions
per unit surface and time.
Let [image: \mathbf{a}] the integrated rates, [image: \mathbf{c}] be the
rate constants, [image: \mathbf{n}_i] the number of available sites
during kMC-time interval i, [image: \{\Delta t_i\}] the corresponding
timesteps then [image: a_{i}(t)] at the time [image: t=\sum_{i=1}\Delta t_i]
is calculated according to [image: a_{i}(t)=\sum_{i=1} c_{i} n_{i}\Delta t_i].

base/interval_search_real

This is basically a standard binary search algorithm that expects an array
of ascending real numbers and a scalar real and return the key of the
corresponding field, with the following modification :

	the value of the returned field is equal of larger of the given
value. This is important because the given value is between 0 and the
largest value in the array and otherwise the last field is never
selected.

	if two or more values in the array are identical, the function
return the index of the leftmost of those field. This is important
because having field with identical values means that all field except
the leftmost one do not contain any sites. Refer to
update_accum_rate to understand why.

	the value of the returned field may no be zero. Therefore the index
the to be equal or larger than the first non-zero field.

However: as everyone knows the binary search is trickier than it appears
at first site especially real numbers. So intensive testing is
suggested here!

	arr real array of type rsingle (kind_values.f90) in monotonically (not strictly) increasing order

	value real positive number from [0, max_arr_value]

base/kmc_step

Number of kMC steps executed.

base/kmc_time

Simulated kMC time in this run in seconds.

base/kmc_time_step

The time increment of the current kMC step.

base/lattice

Stores the actual physical lattice in a 1d array, where the value
on each slot represents the species on that site.

Species constants can be conveniently defined
in lattice_… and later used directly in the process list.

base/nr_of_proc

Total number of available processes.

base/nr_of_sites

Stores the number of sites available for each process.

base/procstat

Stores the total number of times each process has been executed
during one simulation.

base/rates

Stores the rate constants for each process in s^-1.

base/reload_system

Restore state of simulation from *.reload file as saved by
save_system(). This function also allocates the system’s memory
so calling allocate_system again, will cause a runtime failure.

	system_name string of 200 characters which will make the reload_system look for a file called ./<system_name>.reload

	reloaded logical return variable, that is .true. reload of system could be completed successfully, and .false. otherwise.

base/replace_species

Replaces the species at a given site with new_species, given
that old_species is correct, i.e. identical to the site that
is already there.

	site integer representing the site

	old_species integer representing the species to be removed

	new_species integer representing the species to be placed

base/reset_site

This function is a higher-level function to reset a site
as if it never existed. To achieve this the species
is set to null_species and all available processes
are stripped from the site via del_proc.

	site integer representing the requested site.

	species integer representing the species that ought to be at the site, for consistency checks

base/save_system

save_system stores the entire system information in a simple ASCII
filed names <system_name>.reload. All fields except avail_sites are
stored in the simple scheme:

variable value

In the case of array variables, multiple values are seperated by one or
more spaces, and the record is terminated with a newline. The variable
avail_sites is treated slightly differently, since printed on a single
line it is almost impossible to interpret from the ASCII files. Instead
each process starts a new line, and the first number on the line stands
for the process number and the remaining fields, hold the values.

none

base/set_kmc_step

Sets the current kmc_step

	kmc_step Writeable integer

base/set_kmc_time

Sets current kmc_time as rdouble real as defined in kind_values.f90.

	new readable real, that the kmc time will be set to

base/set_rate_const

Allows to set the rate constant of the process with the number proc_nr.

	proc_n The process number as defined in the corresponding proclist_ module.

	rate the rate in [image: s^{-1}]

base/set_system_name

Set the systems name. Useful in conjunction with base.save_system
to save *.reload files under a different name than the default one.

	system_name Readable string of type character(len=200).

base/start_time

CPU time spent in simulation at least reload.

base/system_name

Unique indentifier of this simulation to be used for restart files.
This name should not contain any characters that you don’t want to
have in a filename either, i.e. only [A-Za-z0-9_-].

base/update_accum_rate

Updates the vector of accum_rates.

none

base/update_clocks

Updates walltime, kmc_step and kmc_time.

	ran_time Random real number [image: \in [0,1]]

base/update_integ_rate

Updates the vector of integ_rates.

none

base/volume

Total number of sites.

base/walltime

Total CPU time spent on this simulation.

kmcos/kind_values

This module offers kind_values for commonly
used intrinsic types in a platform independent way.

kmcos/lattice

Implements the mappings between the real space lattice
and the 1-D lattice, which kmcos/base operates on.
Furthermore replicates all geometry specific functions of kmcos/base
in terms of lattice coordinates.
Using this module each site can be addressed with 4-tuple
(i, j, k, n) where i, j, k define the unit cell and
n the site within the unit cell.

lattice/allocate_system

Allocates system, fills mapping cache, and
checks whether mapping is consistent

none

lattice/calculate_lattice2nr

Maps all lattice coordinates onto a continuous
set of integer [image: \in [1,volume]]

	site integer array of size (4) a lattice coordinate

lattice/calculate_nr2lattice

Maps a continuous set of
of integers [image: \in [1,volume]] to a
4-tuple representing a lattice coordinate

	nr integer representing the site index

lattice/deallocate_system

Deallocates system including mapping cache.

none

lattice/default_layer

The layer in which the model is initially in by default (only relevant for multi-lattice models).

lattice/lattice2nr

Caching array holding the mapping from index to lattice
coordinate: (x, y, z, n) -> i.

lattice/model_dimension

Store the number of dimensions of this model: 1, 2, or 3

lattice/nr2lattice

Caching array holding the mapping from index to lattice
coordinate: i -> (x, y, z, n).

lattice/nr_of_layers

Constant storing the number of layers (for multi-lattice models > 1)

lattice/site_positions

The positions of (adsorption) site in the unit cell in
fractional coordinates.

lattice/spuck

spuck = Sites Per Unit Cell Konstant
The number of sites per unit cell, i.e. for coordinate
notation (x, y, n) this is the maximum value of n.

lattice/system_size

Stores the current size of the allocated system lattice (x, y, z)
in an integer array. In low-dimensional system, corresponding entries will be set to 1.
Note that this should be thought of as a read-only variable. Changing its value at model
runtime will not the indented effect of actually changing the simulated lattice.
The definitive location for custom lattice size is simulation_size in kmc_settings.py.

If the system size shall be changed programmatically, it needs to happen before the KMC_Model
is instantiated and Fortran array are allocated accordingly, like to

#!/usr/bin/env python3

import kmc_settings
import kmcos.run

kmc_settings.simulation_size = 9, 9, 4

	with kmcos.run.KMC_Model() as model:

	print(model.lattice.system_size)))`

lattice/unit_cell_size

The dimensions of the unit cell (e.g. in Angstrom) of the
unit cell.

kmcos/proclist

Implements the kMC process list.

proclist/do_kmc_step

Performs exactly one kMC step.
* first update clock
* then configuration sampling step
* last execute process

none

proclist/do_kmc_steps

Performs n kMC step.
If one has to run many steps without evaluation
do_kmc_steps might perform a little better.
* first update clock
* then configuration sampling step
* last execute process

n : Number of steps to run

proclist/do_kmc_steps_time

Performs a variable number of KMC steps to try to match the requested
simulation time as closely as possible without going over. This routine
always performs at least one KMC step before terminating.
* Determine the time step for the next process
* If the time limit is not exceeded, update clocks, rates, execute process,

etc.; otherwise, abort.

Ideally we would use state(seed_size) but that was not working, so hardcoded size.

t : Requested simulation time increment (input)
n : Maximum number of steps to run (input)
num_iter : the number of executed iterations (output)

proclist/get_next_kmc_step

Determines next step without executing it.
However, it changes the position in the random_number
sequence. The python function for
model.get_next_kmc_step() should be used
as it makes additional function calls
to reset the random numbers.
Calling model.proclist.get_next_kmc_step()
is discouraged as that will call this subroutine
directly and will not reset the random numbers.

none

proclist/get_occupation

Evaluate current lattice configuration and returns
the normalized occupation as matrix. Different species
run along the first axis and different sites run
along the second.

none

proclist/get_seed

	Function to retrieve the state of the random number generator to

	permit reproducible restart trajectories.

	None

proclist/init

Allocates the system and initializes all sites in the given
layer.

	input_system_size number of unit cell per axis.

	system_name identifier for reload file.

	layer initial layer.

	no_banner [optional] if True no copyright is issued.

proclist/initialize_state

Initialize all sites and book-keeping array
for the given layer.

	layer integer representing layer

proclist/put_seed

Subroutine to set the state of the random number generator to
permit reproducible restart trajectories.

	state an array of integers with the state of the random number

generator (input)

proclist/run_proc_nr

Runs process proc on site nr_site.

	proc integer representing the process number

	nr_site integer representing the site

proclist/seed_gen

Function to transform a single number into a full set of integers
required for initializing the random number generator.

	sd an integer used to seed a simple random number generator

used to generate additional integers for seeding the production random
number generator (input)

kmcos/base

The base kMC module, which implements the kMC method on a [image: d = 1]
lattice. Virtually any lattice kMC model can be build on top of this.
The methods offered are:

	de/allocation of memory

	book-keeping of the lattice configuration and all available processes

	updating and tracking kMC time, kMC step and wall time

	saving and reloading the current state

	determine the process and site to be executed

base/accum_rates

Stores the accumulated rate constant up to a given process number
taking into account all sites in which it is possible.
###

base/accum_rates_proc

Used to store the accumulated rate associated to each process
###

base/add_proc

The main idea of this subroutine is described in del_proc. Adding one
process to one capability is programmatically simpler since we can just
add it to the end of the respective array in avail_sites.

	proc positive integer number that represents the process to be added.

	site positive integer number that represents the site to be manipulated

base/allocate_system

Allocates all book-keeping structures and stores
local copies of system name and size(s):

	systen_name identifier of this simulation, used as name of punch file

	volume the total number of sites

	nr_of_proc the total number of processes

base/assertion_fail

Function that shall be used by all parts of the program to print a
proper message in case some assertion fails.

	a condition that is supposed to hold true

	r message that is printed to the poor user in case it fails

base/avail_sites

Main book-keeping array that stores for each process the sites
that are available and for each site the address
in this very array. The meaning of the fields are:

avail_sites(proc, field, switch)

where:

	proc – refers to a process in the process list

	the field within the process, but the meaning differs as explained
under ‘switch’

	switch – can be either 1 or 2 and switches between
(1) the actual numbers of the sites, which are available
and filled in from the left but in whatever order they come
or (2) the location where the site is stored in (1).

base/can_do

Returns true if ‘site’ can do ‘proc’ right now

	proc integer representing the requested process.

	site integer representing the requested site.

	can writeable boolean, where the result will be stored.

base/deallocate_system

Deallocate all allocatable arrays: avail_sites, lattice, rates,
accum_rates, procstat.

none

base/del_proc

del_proc delete one process from the main book-keeping array
avail_sites. These book-keeping operations happen in O(1) time with the
help of some more book-keeping overhead. avail_sites stores for each
process all sites that are available. The array for each process is
filled from the left, but sites generally not ordered. With this
determine_procsite can effectively pick the next site and process. On
the other hand a second array (avail_sites(:,:,2)) holds for each
process and each site, the location where it is stored in
avail_site(:,:,1). If a site needs to be removed this subroutine first
looks up the location via avail_sites(:,:,1) and replaces it with the
site that is stored as the last element for this process.

	proc positive integer that states the process

	site positive integer that encodes the site to be manipulated

base/determine_procsite

Expects two random numbers between 0 and 1 and determines the
corresponding process and site from accum_rates and avail_sites.
Technically one random number would be sufficient but to circumvent
issues with wrong interval_search_real implementation or rounding
errors I decided to take two random numbers:

	ran_proc Random real number from [image: \in[0,1]] that selects the next process

	ran_site Random real number from [image: \in[0,1]] that selects the next site

	proc Return integer [image: \in[1,\mathrm{nr_of_proc}]

	site Return integer [image: \in [1,\mathrm{volume}]

base/get_accum_rate

Return accumulated rate at a given process.

	proc_nr integer representing the requested process.

	return_accum_rate writeable real, where the requested accumulated rate will be stored.

base/get_avail_site

Return field from the avail_sites database

	proc_nr integer representing the requested process.

	field integer for the site at question

	switch 1 or 2 for site or storage location

base/get_integ_rate

Return integrated rate at a given process.

	proc_nr integer representing the requested process.

	return_integ_rate writeable real, where the requested integrated rate will be stored.

base/get_kmc_step

Return the current kmc_step

	kmc_step Writeable integer

base/get_kmc_time

Returns current kmc_time as rdouble real as defined in kind_values.f90.

	return_kmc_time writeable real, where the kmc_time will be stored.

base/get_kmc_time_step

Returns current kmc_time_step (the time increment).

	return_kmc_step writeable integer, where the kmc_time_step will be stored.

base/get_kmc_volume

Return the total number of sites.

	volume Writeable integer.

base/get_nrofsites

Return how many sites are available for a certain process.
Usually used for debugging

	proc integer representing the requested process

	return_nrofsites writeable integer, where nr of sites gets stored

base/get_procstat

Return process counter for process proc as integer.

	proc integer representing the requested process.

	return_procstat writeable integer, where the process counter will be stored.

base/get_rate

Return rate of given process.

	proc_nr integer representing the requested process.

	return_rate writeable real, where the requested rate will be stored.

base/get_species

Return the species that occupies site.

	site integer representing the site

base/get_system_name

Return the systems name, that was specified with base/allocate_system

	system_name Writeable string of type character(len=200).

base/get_walltime

Return the current walltime.

	return_walltime writeable real where the walltime will be stored.

base/increment_procstat

Increment the process counter for process proc by one.

	proc integer representing the process to be increment.

base/integ_rates

Stores the time-integrated rates (non-normalized to surface area)
Used to determine reaction rates, i.e. average number of reactions
per unit surface and time.
Let [image: \mathbf{a}] the integrated rates, [image: \mathbf{c}] be the
rate constants, [image: \mathbf{n}_i] the number of available sites
during kMC-time interval i, [image: \{\Delta t_i\}] the corresponding
timesteps then [image: a_{i}(t)] at the time [image: t=\sum_{i=1}\Delta t_i]
is calculated according to
System Message: WARNING/2 (a_{i}(t)=\sum_{i=1}} c_{i} n_{i}\Delta t_i)

latex exited with error
[stdout]
This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) (preloaded format=latex)
 restricted \write18 enabled.
entering extended mode
(./math.tex
LaTeX2e <2017-04-15>
Babel <3.18> and hyphenation patterns for 84 language(s) loaded.
(/usr/share/texlive/texmf-dist/tex/latex/base/article.cls
Document Class: article 2014/09/29 v1.4h Standard LaTeX document class
(/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo))
(/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty
(/usr/share/texlive/texmf-dist/tex/latex/ucs/utf8x.def))
(/usr/share/texlive/texmf-dist/tex/latex/ucs/ucs.sty
(/usr/share/texlive/texmf-dist/tex/latex/ucs/data/uni-global.def))
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
For additional information on amsmath, use the `?' option.
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty))
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty)
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty))
(/usr/share/texlive/texmf-dist/tex/latex/amscls/amsthm.sty)
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty))
(/usr/share/texlive/texmf-dist/tex/latex/anyfontsize/anyfontsize.sty)
(/usr/share/texlive/texmf-dist/tex/latex/tools/bm.sty) (./math.aux)
(/usr/share/texlive/texmf-dist/tex/latex/ucs/ucsencs.def)
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd)
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd)
! Extra }, or forgotten $.
l.13 ...e{12}{14}\selectfont $a_{i}(t)=\sum_{i=1}}
 c_{i} n_{i}\Delta t_i$
[1] (./math.aux))
(see the transcript file for additional information)
Output written on math.dvi (1 page, 456 bytes).
Transcript written on math.log.

.

base/interval_search_real

This is basically a standard binary search algorithm that expects an array
of ascending real numbers and a scalar real and return the key of the
corresponding field, with the following modification :

	the value of the returned field is equal or larger than given
value. This is important because the given value is between 0 and the
largest value in the array and otherwise the last field is never
selected.

	if two or more values in the array are identical, the function
return the index of the leftmost of those field. This is important
because having field with identical values means that all field except
the leftmost one do not contain any sites. Refer to
update_accum_rate to understand why.

	the value of the returned field may not be zero. Therefore the index
the to be equal or larger than the first non-zero field.

However: as everyone knows the binary search is trickier than it appears
at first sight especially real numbers. So intensive testing is
suggested here!

	arr real array of type rsingle (kind_values.f90) in monotonically (not strictly) increasing order

	value real positive number from [0, max_arr_value]

base/kmc_step

Number of kMC steps executed.

base/kmc_time

Simulated kMC time in this run in seconds.

base/kmc_time_step

The time increment of the current kMC step.

base/lattice

Stores the actual physical lattice in a 1d array, where the value
on each slot represents the species on that site.

Species constants can be conveniently defined
in lattice_… and later used directly in the process list.

base/nr_of_proc

Total number of available processes.

base/nr_of_sites

Stores the number of sites available for each process.

base/procstat

Stores the total number of times each process has been executed
during one simulation.

base/rates

Stores the rate constants for each currently possible process
ordered as avail_sites(:,:,1).

base/rates

Stores the rate constants for each process in s^-1.

base/reaccumulate_rates_matrix

Performs a process wide reaccumulation of the values in the rates_matrix.
To be used when some of the user parameters are updated.
Expected to aleviate some of the problems arising from floating point errors

base/reload_system

Restore state of simulation from *.reload file as saved by
save_system(). This function also allocates the system’s memory
so calling allocate_system again, will cause a runtime failure.

	system_name string of 200 characters which will make the reload_system look for a file called ./<system_name>.reload

	reloaded logical return variable, that is .true. reload of system could be completed successfully, and .false. otherwise.

base/replace_species

Replaces the species at a given site with new_species, given
that old_species is correct, i.e. identical to the site that
is already there.

	site integer representing the site

	old_species integer representing the species to be removed

	new_species integer representing the species to be placed

base/reset_site

This function is a higher-level function to reset a site
as if it never existed. To achieve this the species
is set to null_species and all available processes
are stripped from the site via del_proc.

	site integer representing the requested site.

	species integer representing the species that ought to be at the site, for consistency checks

base/save_system

save_system stores the entire system information in a simple ASCII
filed names <system_name>.reload. All fields except avail_sites are
stored in the simple scheme:

variable value

In the case of array variables, multiple values are seperated by one or
more spaces, and the record is terminated with a newline. The variable
avail_sites is treated slightly differently, since printed on a single
line it is almost impossible to interpret from the ASCII files. Instead
each process starts a new line, and the first number on the line stands
for the process number and the remaining fields, hold the values.

none

base/set_kmc_time

Sets current kmc_time as rdouble real as defined in kind_values.f90.

	new readable real, that the kmc time will be set to

base/set_rate_const

Allows to set the rate constant of the process with the number proc_nr.

	proc_n The process number as defined in the corresponding proclist_ module.

	rate the rate in [image: s^{-1}]

base/set_system_name

Set the systems name. Useful in conjunction with base.save_system
to save *.reload files under a different name than the default one.

	system_name Readable string of type character(len=200).

base/start_time

CPU time spent in simulation at least reload.

base/system_name

Unique indentifier of this simulation to be used for restart files.
This name should not contain any characters that you don’t want to
have in a filename either, i.e. only [A-Za-z0-9_-].

base/update_accum_rate

Updates the vector of accum_rates.

none

base/update_clocks

Updates walltime, kmc_step and kmc_time.

	ran_time Random real number [image: \in [0,1]]

base/update_integ_rate

Updates the vector of integ_rates.

none

base/update_rates_matrix

Updates the rates_matrix. To be used when the state of a bystander has
been modified

!

	proc positive integer number that represents the process whose rate is changed.

	site positive integer number that represents the site for the process

	rate positive real number that represents the updated rate

base/volume

Total number of sites.

base/walltime

Total CPU time spent on this simulation.

kmcos/kind_values

This module offers kind_values for commonly
used intrinsic types in a platform independent way.

kmcos/lattice

Implements the mappings between the real space lattice
and the 1-D lattice, which kmcos/base operates on.
Furthermore replicates all geometry specific functions of kmcos/base
in terms of lattice coordinates.
Using this module each site can be addressed with 4-tuple
(i, j, k, n) where i, j, k define the unit cell and
n the site within the unit cell.

lattice/allocate_system

Allocates system, fills mapping cache, and
checks whether mapping is consistent

none

lattice/calculate_lattice2nr

Maps all lattice coordinates onto a continuous
set of integer [image: \in [1,volume]]

	site integer array of size (4) a lattice coordinate

lattice/calculate_nr2lattice

Maps a continuous set of
of integers [image: \in [1,volume]] to a
4-tuple representing a lattice coordinate

	nr integer representing the site index

lattice/deallocate_system

Deallocates system including mapping cache.

none

lattice/default_layer

The layer in which the model is initially in by default (only relevant for multi-lattice models).

lattice/lattice2nr

Caching array holding the mapping from index to lattice
coordinate: (x, y, z, n) -> i.

lattice/model_dimension

Store the number of dimensions of this model: 1, 2, or 3

lattice/nr2lattice

Caching array holding the mapping from index to lattice
coordinate: i -> (x, y, z, n).

lattice/nr_of_layers

Constant storing the number of layers (for multi-lattice models > 1)

lattice/site_positions

The positions of (adsorption) site in the unit cell in
fractional coordinates.

lattice/spuck

spuck = Sites Per Unit Cell Konstant
The number of sites per unit cell, i.e. for coordinate
notation (x, y, n) this is the maximum value of n.

lattice/system_size

Stores the current size of the allocated system lattice (x, y, z)
in an integer array. In low-dimensional system, corresponding entries will be set to 1.
Note that this should be thought of as a read-only variable. Changing its value at model
runtime will not the indented effect of actually changing the simulated lattice.
The definitive location for custom lattice size is simulation_size in kmc_settings.py.

If the system size shall be changed programmatically, it needs to happen before the KMC_Model
is instantiated and Fortran array are allocated accordingly, like to

#!/usr/bin/env python3

import kmc_settings
import kmcos.run

kmc_settings.simulation_size = 9, 9, 4

	with kmcos.run.KMC_Model() as model:

	print(model.lattice.system_size)))`

lattice/unit_cell_size

The dimensions of the unit cell (e.g. in Angstrom) of the
unit cell.

proclist/do_kmc_step

Performs exactly one kMC step.
* first update clock
* then configuration sampling step
* last execute process

none

proclist/do_kmc_steps

Performs n kMC step.
If one has to run many steps without evaluation
do_kmc_steps might perform a little better.
* first update clock
* then configuration sampling step
* last execute process

n : Number of steps to run

proclist/do_kmc_steps_time

Performs a variable number of KMC steps to try to match the requested
simulation time as closely as possible without going over. This routine
always performs at least one KMC step before terminating.
* Determine the time step for the next process
* If the time limit is not exceeded, update clocks, rates, execute process,

etc.; otherwise, abort.

Ideally we would use state(seed_size) but that was not working, so hardcoded size.

t : Requested simulation time increment (input)
n : Maximum number of steps to run (input)
num_iter : the number of executed iterations (output)

proclist/get_next_kmc_step

Determines next step without executing it.
However, it changes the position in the random_number
sequence. The python function for
model.get_next_kmc_step() should be used
as it makes additional function calls
to reset the random numbers.
Calling model.proclist.get_next_kmc_step()
is discouraged as that will call this subroutine
directly and will not reset the random numbers.

none

proclist/get_occupation

Evaluate current lattice configuration and returns
the normalized occupation as matrix. Different species
run along the first axis and different sites run
along the second.

none

proclist/get_seed

	Function to retrieve the state of the random number generator to

	permit reproducible restart trajectories.

	None

proclist/init

Allocates the system and initializes all sites in the given
layer.

	input_system_size number of unit cell per axis.

	system_name identifier for reload file.

	layer initial layer.

	no_banner [optional] if True no copyright is issued.

proclist/initialize_state

Initialize all sites and book-keeping array
for the given layer.

	layer integer representing layer

proclist/put_seed

Subroutine to set the state of the random number generator to
permit reproducible restart trajectories.

	state an array of integers with the state of the random number

generator (input)

proclist/run_proc_nr

Runs process proc on site nr_site.

	proc integer representing the process number

	nr_site integer representing the site

proclist/seed_gen

Function to transform a single number into a full set of integers
required for initializing the random number generator.

	sd an integer used to seed a simple random number generator

used to generate additional integers for seeding the production random
number generator (input)

kmcos/proclist

Implements the kMC process list.

Modeling lateral interaction

Introduction

Lateral Interaction Models

	pairwise interaction

	bond-order potentials

Conquering combinatorics with itertools

Even restricting oneself to nearest neighbor
lateral interaction to number of different
configurations to be considered for lateral
interactions can quickly reach a couple
of tens or hundred. A phenomenon which is
among practitioners humbly referred to as
combinatorial explosions. Unfortunately
manualy typing all these combinations if
usually tiring and thus error prone.
Fortunately the itertools module from the
python standard library allows to very quickly
generate all needed configurations. Before
delving into the practical steps of this I
would like to point out that lateral interaction
typically slows down the simulation by about
one order of magnitude, which is a purely
empirical fact.

Development

Contributions of any sort are of course quite welcome.
It is best to first contact the developers. After that,
patches and comments are ideally sent in form of email,
pull request, or github issues.

Below is advice from the original developer:

To make synergizing a most pleasing experience I suggest you use
git, nose, pep8, and pylint

sudo apt-get install git python-nose pep8 pylint

When sending a patch please make sure the nose tests pass, i.e. run
from the top project directory

nosetests

To make testing and comparison even easier it would be helpful if you
create an account with Travis CI [https://travis-ci.org/] and run your
commits through the test suite.

Have a look at Google’s Python style guide [https://google.github.io/styleguide/pyguide.html] as far as style questions go.

A first kMC Model–the API way

In general there are two interfaces to defining a new
model: A GUI and an API. While the GUI can be quite
nice especially for beginners, it turns out that the
API is better maintained simply because … well, maintaing
a GUI is a lot more work.

So we will start by learning how to setup the model using the
API which will turn out not to be hard at all. It is knowing howto
do this will also pay-off especially if you starting tinkering
with your existing models and make little changes here and there.

Build the model

You may also look at MyFirstDiffusion__build.py in the examples directory.

We start by making the necessary import statements (in *python* [http://python.org] or better *ipython* [http://ipython.org]):

import kmcos
from kmcos.types import *
from kmcos.io import *
import numpy as np

which imports all classes that make up a kMC project. The functions
from kmcos.io will only be needed at the end to save the project
or to export compilable code.

The example sketched out here leads you to a kMC model for CO adsorption
and desorption on Pd(100). First you should instantiate a new project
and fill in meta information

kmc_model = kmcos.create_kmc_model()
kmc_model.set_meta(author = 'Your Name',
 email = 'your.name@server.com',
 model_name = 'MyFirstModel',
 model_dimension = 2,)

Next you add some species or states. Note that whichever
species you add first is the default species with which all sites in the
system will be initialized. Of course this can be changed later

For surface science simulations it is useful to define an
empty state, so we add

kmc_model.add_species(name='empty')

and some surface species. Given you want to simulate CO adsorption and
desorption on a single crystal surface you would say

kmc_model.add_species(name='CO',
 representation="Atoms('CO',[[0,0,0],[0,0,1.2]])")

where the string passed as representation is a string representing
a CO molecule which can be evaluated in ASE namespace [https://gitlab.com/ase/ase/repository/archive.zip?ref=master].

Once you have all species declared is a good time to think about the geometry.
To keep it simple we will stick with a simple-cubic lattice in 2D which
could for example represent the (100) surface of a fcc crystal with only
one adsorption site per unit cell. You start by giving your layer a name

layer = kmc_model.add_layer(name='simple_cubic')

and adding a site

layer.sites.append(Site(name='hollow', pos='0.5 0.5 0.5',
 default_species='empty'))

Where pos is given in fractional coordinates, so this site
will be in the center of the unit cell.

Simple, huh? Now you wonder where all the rest of the geometry went?
For a simple reason: the geometric location of a site is
meaningless from a kMC point of view. In order to solve the master
equation none of the numerical coordinates
of any lattice sites matter since the master equation is only
defined in terms of states and transition between these. However
to allow a graphical representation of the simulation one can add geometry
as you have already done for the site. You set the size of the unit cell
via

kmc_model.lattice.cell = np.diag([3.5, 3.5, 10])

which are prototypical dimensions for a single-crystal surface in
Angstrom.

Ok, let us see what we managed so far: you have a lattice with a
site that can be either empty or occupied with CO.

Populate process list and parameter list

The remaining work is to populate the process list and the
parameter list. The parameter list defines the parameters
that can be used in the expressions of the rate constants.
In principle one could do without the parameter
list and simply hard code all parameters in the process list,
however one looses some nifty functionality like easily
changing parameters on-the-fly or even interactively.

A second benefit is that you achieve a clear separation
of the kinetic model from the barrier input,
which usually has a different origin.

In practice filling the parameter list and the process
list is often an iterative process, however since
we have a fairly short list, we can try to set all parameters
at once.

First of all you want to define the external parameters to
which our model is coupled. Here we use the temperature
and the CO partial pressure:

kmc_model.add_parameter(name='T', value=600., adjustable=True, min=400, max=800)
kmc_model.add_parameter(name='p_CO', value=1., adjustable=True, min=1e-10, max=1.e2)

You can also set a default value and a minimum and maximum value
set defines how the scrollbars a behave later in the runtime GUI.

To describe the adsorption rate constant you will need the area
of the unit cell:

kmc_model.add_parameter(name='A', value='(3.5*angstrom)**2')

Last but not least you need a binding energy of the particle on
the surface. Since without further ado we have no value for the
gas phase chemical potential, we’ll just call it deltaG and keep
it adjustable

kmc_model.add_parameter(name='deltaG', value='-0.5', adjustable=True,
 min=-1.3, max=0.3)

To define processes we first need a coordinate 2

coord = kmc_model.lattice.generate_coord('hollow.(0,0,0).simple_cubic')

Then you need to have at least two processes. A process or elementary step in kMC
means that a certain local configuration must be given so that something
can happen at a certain rate constant. In the framework here this is
phrased in terms of ‘conditions’ and ‘actions’. 1
So for example an adsorption requires at least one site to be empty
(condition). Then this site can be occupied by CO (action) with a
rate constant. Written down in code this looks as follows

kmc_model.add_process(name='CO_adsorption',
 conditions=[Condition(coord=coord, species='empty')],
 actions=[Action(coord=coord, species='CO')],
 rate_constant='p_CO*bar*A/sqrt(2*pi*umass*m_CO/beta)')

Note

In order to ensure correct functioning of the kmcos kMC solver every action should have a corresponding condition for the same coordinate.

Now you might wonder, how come we can simply use m_CO and beta and such.
Well, that is because the evaluator will to some trickery to resolve such
terms. So beta will be first be translated into 1/(kboltzmann*T) and as
long as you have set a parameter T before, this will go through. Same
is true for m_CO, here the atomic masses are looked up and added. Note
that we need conversion factors of bar and umass.

Then the desorption process is almost the same, except the reverse:

kmc_model.add_process(name='CO_desorption',
 conditions=[Condition(coord=coord, species='CO')],
 actions=[Action(coord=coord, species='empty')],
 rate_constant='p_CO*bar*A/sqrt(2*pi*umass*m_CO/beta)*exp(beta*deltaG*eV)')

To reduce typing, kmcos also knows a shorthand notation for processes.
In order to produce the same process you could also type

kmc_model.parse_process('CO_desorption; CO@hollow->empty@hollow ; p_CO*bar*A/sqrt(2*pi*umass*m_CO/beta)*exp(beta*deltaG*eV)')

and since any non-existing on either the left or the right side
of the -> symbol is replaced by a corresponding term with
the default_species (in this case empty) you could as
well type

kmc_model.parse_process('CO_desorption; CO@hollow->; p_CO*bar*A/sqrt(2*pi*umass*m_CO/beta)*exp(beta*deltaG*eV)')

and to make it even shorter you can parse and add the process on one line

kmc_model.parse_and_add_process('CO_desorption; CO@hollow->; p_CO*bar*A/sqrt(2*pi*umass*m_CO/beta)*exp(beta*deltaG*eV)')

In order to add processes on more than one site possible spanning across unit
cells, there is a shorthand as well. The full-fledged syntax for each
coordinate is

"<site-name>.<offset>.<lattice>"

check Manual generation for details.

Export, save, compile

Before we compile the model, we should specify and understand the various backends that are involved.

local_smart backend (default) for models with <100 processes.
lat_int backend for models with >100 processes. (build the model same ways local_smart but different backend for compile step)
otf backend requires custom model (build requires different process definitions compared to local_smart) and can work for models which require >10000 processes, since each process rate is calculated on the fly instead of being held in memory.

Here is how we specify the model’s backend

kmc_model.backend = 'local_smart'
kmc_model.backend = 'lat_int'
kmc_model.backend = 'otf'

Next, it’s a good idea to save and compile your work

kmc_model.save_model()
kmcos.compile(kmc_model)

This creates an XML file with the full definition of your model and exports the model to compiled code.

Now is the time to leave the python shell. In the current
directory you should see a myfirst_kmc.xml.
You will also see a directory ending with _local_smart,
this directory includes your compiled model.

You can also skip the model exporting (and do it later) by commenting out kmcos.compile(kmc_model):
then you can use a separate python file later.
For some installations, you can use kmcos export myfirst_kmc.xml from the linux terminal
when you are in the same directory as the XML.

During troubleshooting, exporting separately can sometimes be useful to make sure
the compiling occurs gracefully without any line
containining an error.

Running and viewing the model

If you now cd to that folder myfirst_kmc_local_smart and run

python3 kmc_settings.py benchmark

You should see that the model was able to run!
Next, let’s try seeing how it looks visually with

python3 kmc_settings.py view

The “view” command only works on certain operating systems.
For some installations, one can alternativeley type kmcos benchmark and kmcos view.

For running the model, it is recommended to use a runfile.

If you wonder why the CO molecules are basically just dangling
there in mid-air that is because you have no background setup, yet.
Choose a transition metal of your choice and add it to the
lattice setup for extra credit :-).

Wondering where to go from here? If the work-flow makes
complete sense, you have a specific model in mind,
and just need some more idioms to implement it
I suggest you take a look at the examples folder [https://github.com/mhoffman/kmcos/tree/master/examples].
for some hints. To learn more about the kmcos approach
and methods you should into topic guides.

In technical terms, kmcos is run an API via the kmcos python module.

Additionally, though now discouraged, kmcos can be invoked directly from the command line in one of the following
ways:

kmcos [help] (all|benchmark|build|edit|export|help|import|rebuild|run|settings-export|shell|version|view|xml) [options]

Taking it home

Despite its simplicity you have now seen all elements needed
to implement a kMC model and hopefully gotten a first feeling for
the workflow.

	1

	You will have to describe all processes
in terms of conditions and
actions and you find a more complete
description in the
topic guide
to the process description syntax.

	2

	The description of coordinates follows
the simple syntax of the coordinate
syntax and the
topic guide
explains how that works.

An alternative way using .ini files

Presently, a full description of the .ini capability is not being provided because this way is not the standard way of using kmcos. However, it is available. This method is an alternative to making an xml file, and can be used instead of kmcos export.

Prepare a minimal input file with the following content and save it as mini_101.ini

[Meta]
author = Your Name
email = you@server.com
model_dimension = 2
model_name = fcc_100

[Species empty]
color = #FFFFFF

[Species CO]
representation = Atoms("CO", [[0, 0, 0], [0, 0, 1.17]])
color = #FF0000

[Lattice]
cell_size = 3.5 3.5 10.0

[Layer simple_cubic]
site hollow = (0.5, 0.5, 0.5)
color = #FFFFFF

[Parameter k_CO_ads]
value = 100
adjustable = True
min = 1
max = 1e13
scale = log

[Parameter k_CO_des]
value = 100
adjustable = True
min = 1
max = 1e13
scale = log

[Process CO_ads]
rate_constant = k_CO_ads
conditions = empty@hollow
actions = CO@hollow
tof_count = {'adsorption':1}

[Process CO_des]
rate_constant = k_CO_des
conditions = CO@hollow
actions = empty@hollow
tof_count = {'desorption':1}

In the same directory run kmcos export mini_101.ini. You should now have a folder mini_101_local_smart
in the same directory. cd into it and run kmcos benchmark. If everything went well you should see something
like

Using the [local_smart] backend.
1000000 steps took 1.51 seconds
Or 6.62e+05 steps/s

In the same directory try running kmcos view to watch the model run or fire up kmcos shell
to interact with the model interactively. Explore more commands with kmcos help and please
refer to the documentation how to build complex model and evaluate them systematically. To test all bells and whistles try kmcos edit mini_101.ini and inspect the model visually.

A first kMC Model–the GUI way

This tutorial will walk you through the creation of a
simple adsorption/desorption model on a simple cubic surface.
Despite its simplicity it touches all elements contained in
the GUI and could be considered from first-principles.

A first kMC Model–with input files

One way to define kMC models is using an input file. The general format is identical to the quite common ini-files, however as we will
see below one can seamlessly embed python code here as well to use
more high-level constructs. But first things first.

Construct the model

The example sketched out here leads you to a kMC model for CO adsorption
and desorption on Pd(100) including a simple lateral interaction. Granted
this hardly excites surface scientists but we need to start somewhere, right?

The following source code should be written into a text file using the editor of your choice. Use .ini as the suffix such as myfirst_kmc.ini. Start by filling out the meta information

[Meta]
author = 'Your name'
email = 'your.name@server.com'
model_name = 'MyFirstModel'
model_dimension = 2

The important bit to notice here is that one uses the correct section names (e.g. [Meta]) and capitalization counts. Next we will add some species. Each species has its own section of the form [Species <species_name>] where <species_name> is just a place holder. Not the space between Species and the name and the name shouldn’t contain any spaces and follow the same rules as variables names. That is consisting only of letter and numbers or underscore (_)

[Species empty]

[Species CO]
representation = Atoms('CO',[[0,0,0],[0,0,1.2]])

where the string passed as representation is a string representing
a CO molecule which can be evaluated in ASE namespace [https://wiki.fysik.dtu.dk/ase/ase/atoms.html].

Once you have all species declared is a good time to think about the geometry.
To keep it simple we will stick with a simple-cubic lattice in 2D which
could for example represent the (100) surface of a fcc crystal with only
one adsorption site per unit cell. You start by giving your layer a name

[Layer simple_cubic]
site hollow = (0.5, 0.5, 0.5)

Here we readily added a site named ‘hollow at the center of each unit cell.

Simple, huh? Now you wonder where all the rest of the geometry went?
For a simple reason: the geometric location of a site is
meaningless from a kMC point of view. In order to solve the master
equation none of the numerical coordinates
of any lattice sites matter since the master equation is only
defined in terms of states and transition between these. However
to allow a graphical representation of the simulation one can add geometry
as you have already done for the site. You set the size of the unit cell
via

[Lattice]
cell_size = 3.5 3.5 10

which are prototypical dimensions for a single-crystal surface in
Angstrom.

Ok, let us see what we managed so far: you have a lattice with a
site that can be either empty or occupied with CO.

Populate process list and parameter list

The remaining work is to populate the process list and the
parameter list. The parameter list defines the parameters
that can be used in the expressions of the rate constants.
In principle one could do without the parameter
list and simply hard code all parameters in the process list,
however one looses some nifty functionality like easily
changing parameters on-the-fly or even interactively.

A second benefit is that you achieve a clear separation
of the kinetic model from the barrier input,
which usually has a different origin.

In practice filling the parameter list and the process
list is often an iterative process, however since
we have a fairly short list, we can try to set all parameters
at once.

First of all you want to define the external parameters to
which our model is coupled. Here we use the temperature
and the CO partial pressure

[Parameter T]
value = 600
adjustable = True
min = 400
max = 600

and

[Parameter p_CO]
value = 1
adjustable = True
min = 1e-10
max = 1e2

You can also set a default value and a minimum and maximum value
set defines how the scrollbars a behave later in the runtime GUI.

To describe the adsorption rate constant you will need the area
of the unit cell:

[Parameter A]
value = (3.5*angstrom)**2

Last but not least you need a binding energy of the particle on
the surface. Since without further ado we have no value for the
gas phase chemical potential, we’ll just call it deltaG and keep
it adjustable

[Parameter deltaG]
value = -0.5
adjustable = True
min = -1.3
max = 0.3

Then you need to have at least two processes. A process or elementary step in kMC means that a certain local configuration must be given so that something can happen at a certain rate constant. In the framework here this is phrased in terms of ‘conditions’ and ‘actions’. 1
So for example an adsorption requires at least one site to be empty
(condition). Then this site can be occupied by CO (action) with a
rate constant. Written down in code this looks as follows

[Process CO_adsorption]
rate_constant = p_CO*bar*A/sqrt(2*pi*umass*m_CO/beta)
conditions = empty@hollow
actions = CO@hollow

Now you might wonder, how come we can simply use m_CO and beta and such.
Well, that is because the evaluator will to some trickery to resolve such
terms. So beta will be first be translated into 1/(kboltzmann*T) and as
long as you have set a parameter T before, this will go through. Same
is true for m_CO, here the atomic masses are looked up and added. Note
that we need conversion factors of bar and umass.

Then the desorption process is almost the same, except the reverse:

[Process CO_desorption]
rate_constant = p_CO*bar*A/sqrt(2*pi*umass*m_CO/beta)*exp(beta*deltaG*eV)
conditions = CO@hollow
actions = empty@hollow

Finally save the file and run from the same directory

kmcos export myfrist_kmc.ini

If you now cd to that folder myfirst_kmc and run:

kmcos view

… and dada! Your first running kMC model right there!

If you wonder why the CO molecules are basically just dangling
there in mid-air that is because you have no background setup, yet.
Choose a transition metal of your choice and add it to the
lattice setup for extra credit :-).

Wondering where to go from here? If the work-flow makes
complete sense, you have a specific model in mind,
and just need some more idioms to implement it
I suggest you take a look at the examples folder [https://github.com/mhoffman/kmcos/tree/master/examples].
for some hints. To learn more about the kmcos approach
and methods you should into topic guides.

Embedding python code [EXPERIMENTAL]

If you start writing bigger model with sophisticated interaction writing down all processes in this .ini-format might be less than ideal. Therefore can understand embedded python code if you follow the following 2 rules: start every line containing python code with a #% (with a space after the %) and every variable in the .ini-parts that should be replaced by its python value in the current scope has to be placed in curly brackets {}. The latter is needed so that it gets interpolated by the str.format() function. To give you a simple example, let’s add adsorption process for a lot of different species

#@ for species in ['A', 'B', 'C', 'D']:
 [Process Adsorption_{species}]
 rate_constant = 100
 conditions = empty@hollow
 actions {species}@hollow

Of cource withespace matters here. To keep it simple avoid whitespace before the #@ and indent the .ini-parts as if they were python code (counting whitespace from the # for the #@ marker.

Taking it home

Despite its simplicity you have now seen all elements needed
to implement a kMC model and hopefully gotten a first feeling for
the workflow.

	1

	You will have to describe all processes
in terms of conditions and
actions and you find a more complete
description in the
topic guide
to the process description syntax.

	2

	The description of coordinates follows
the simple syntax of the coordinate
syntax and the
topic guide
explains how that works.

Introduction

kmcos is designed for lattice based Kinetic Monte Carlo simulations to understand chemical kinetics and mechanisms. It has been used to produce more than 10 scientific publications. The best way to learn how to use kmcos is by following the examples.

If you have already followed the kmcos installation instructions and still have the kmcosInstallation directory, then navigate to /kmcosInstallation/kmcos/examples

If you do not have that directory, but have kmcos installed, go to https://github.com/kmcos/kmcos Click on the green button and download zip, to get the examples.

Inside /examples/, run the following commands

python3 MyFirstSnapshots__build.py
cd MyFirstSnapshots_local_smart
python3 runfile.py

The first command uses a python file to create a chemical model (process definitions) and a KMC modeling executable as well.
The “local_smart” is the default backend (default “KMC Engine”, kmcos has several).

After the simulation has run, you will see a csv file named runfile_TOFs_and_Coverages.csv, open this file to see your first KMC output!

Various examples exist. More features and a thorough tutorial are forthcoming. Please join the kmcos-users group https://groups.google.com/g/kmcos-users and email any questions if you get stuck.

Feature overview

This paragraph is from __init__.py

With kmcos you can:

	easily create and modify kMC models through GUI

	store and exchange kMC models through XML

	generate fast, platform independent, self-contained code 1

	run kMC models through GUI or python bindings

kmcos has been developed in the context of first-principles based modelling
of surface chemical reactions but might be of help for other types of
kMC models as well.

kmcos’ goal is to significantly reduce the time you need
to implement and run a lattice kmc simulation. However it can not help
you plan the model.

Typical users will run kmcos entirely from python code by following the examples.

Footnotes

	1

	The source code is generated in Fortran90, written in a modular
fashion. Python bindings are generated using f2py [http://cens.ioc.ee/projects/f2py2e/].

The Model Editor (Deprecated – glade migration is required to revive this feature)

[image: ../_images/screenshot_editor_lattice.png]

The lattice view allows to define sites by simple pointing.

[image: ../_images/screenshot_editor_parameters.png]

Model parameters can be defined including ranges to vary
them over in the runtime viewer.

[image: ../_images/screenshot_editor_species.png]

Species can be added here. The color is used to represent
them in the 2D editor view. The string is an ASE atoms
constructor for display at runtime.

[image: ../_images/screenshot_editor_diffusion.png]

Processes can be added by point and click or by entering
a chemical expression.

Running the Model From Runfiles

Running the Model–the API way

Normally, one uses python runfiles.
However, it is convenient to initially run commands interactively for learning purposes.
The simplest thing to do is to start the model
from within a compiled model directory
using “python3 kmc_settings.py run”

That will start a python shell, allowing one to skip the below commands

#!/usr/bin/env python
from kmcos.run import KMC_Model
model = KMC_Model()

and just interact directly with model. It is often a good idea to use

%logstart some_scriptname.py

as your first command in the IPython command to save what you have typed for later use.

When using a runfile, the starting banner can be turned off by using:

model = KMC_Model(print_rates=False, banner=False)

Now that you have got a model, you try to do some KMC steps

model.do_steps(100000)

which would run 100,000 kMC steps.

Let’s say you want to change the temperature and a partial pressure of
the model you could type

model.parameters.T = 550
model.parameters.p_COgas = 0.5

and all rate constants are instantly updated. In order get a quick
overview of the current settings you can issue e.g.

print(model.parameters)
print(model.rate_constants)

or just

print(model)

Now an instantiated und configured model has mainly two functions: run
kMC steps and report its current configuration.

To analyze the current state you may use

atoms = model.get_atoms()

Note

If you want to fetch data from the current state without
actually visualizing the geometry can speed up the get_atoms()
call using

atoms = model.get_atoms(geometry=False)

This will return an ASE atoms object of the current system, but
it also contains some additional data piggy-backed such as

model.get_occupation_header()
atoms.occupation

model.get_tof_header()
atoms.tof_data

atoms.kmc_time
atoms.kmc_step

If one wants to know what the next kmc step will be
and at which site, without executing the step, one can use

model.get_next_kmc_step()

These quantities are often sufficient when running and simulating
a catalyst surface, but of course the model could be expanded
to more observables. The Fortran modules base, lattice,
and proclist are atttributes of the model instance so,
please feel free to explore the model instance e.g. using
ipython and

model.base.<TAB>
model.lattice.<TAB>
model.proclist.<TAB>

etc..

The occupation is a 2-dimensional array which contains
the occupation for each surface site divided by
the number of unit cell. The first slot
denotes the species and the second slot denotes the
surface site, i.e.

occupation = model.get_atoms().occupation
occupation[species, site-1]

So given there is a hydrogen species
in the model, the occupation of hydrogen across all site
type can be accessed like

hydrogen_occupation = occupation[model.proclist.hydrogen]

To access the coverage of one surface site, we have to
remember to subtract 1, when using the the builtin constants,
like so

hollow_occupation = occupation[:, model.lattice.hollow-1]

Lastly it is important to call

model.deallocate()

once the simulation if finished as this frees the memory
allocated by the Fortan modules. This is particularly
necessary if you want to run more than one simulation
in one script.

Generate Grids of Sampled Data

For some kMC applications you simply require a large number of data points
across a set of external parameters (phase diagrams, microkinetic models).
For this case there is a convenient class ModelRunner to work with

from kmcos.run import ModelRunner, PressureParameter, TemperatureParameter

class ScanKinetics(ModelRunner):
 p_O2gas = PressureParameter(1)
 T = TemperatureParameter(600)
 p_COgas = PressureParameter(min=1, max=10, steps=40)

ScanKinetics().run(init_steps=1e8, sample_steps=1e8, cores=4)

This script generates data points over the specified range(s). The
temperature parameters is uniform grids over 1/T and the
pressure parameters is uniform over log(p). The
script can be run synchronously over many cores as long
as the cores can access the same file system. You have to test whether
the steps before sampling (init_steps) as well as the batch size
(sample_steps) is sufficient.

Manipulating the Model Species at Runtime

To change species on the lattice at the start of simulation
or at any other time in the simulation, one can change
either the whole configuration, or only species on a specific site.

To change species on a specific site, one uses the put command.
There are several syntaxes to use the put command

model.put(site=[x,y,z,n], model.proclist.<species>)
Where 'n' and <species> are the site type and species, respectively. For example:
model.put([0,0,0,model.lattice.ruo2_bridge], model.proclist.co)
model.put([0,0,0,"ruo2_bridge"], "model.proclist.co")
model.put([0,0,0,2], 1) #The 'n' is has indexing starting from 1 (there is no 0 for n), whereas the <species> indexing starts at 0.

If changing many sites at once, the abovev command is quite inefficient,
since each put call, adjusts the book-keeping database. To circumvent
the database update you can use the _put method, like so

model._put(...)
model._put(...)
...
model._adjust_database()

note that after using ‘_put’, one must remember to call _adjust_database()
before executing any next step or the database of available processes
will not match the species, the kmc simulation will become incorrect and likely crash after some steps.

Saving and Reloading the State of the Simulation

If one wants to set the whole configuration of the lattice
once can retreive it, save it, and load it with the following commands

model.dump_config("YourConfigurationName")
model.load_config("YourConfigurationName")

While it is not necessary for a regular user to know, those commands use the following internal commands as part of how they function

#saving the configuration uses:
config = model._get_configuration()
#loading configuration uses:
model._set_configuration(config)
model._adjust_database()

However, simply saving and loading the configuration will not allow you to exactly reproduce the simulation where it left off.
To do that, you also need to save and reload the pseusdo random generator’s state

PRNG_state = model.proclist.get_seed().tolist() #This list can be saved as a pickle or in a text file.
model.proclist.put_seed(PRNG_state) #This command takes the PRNG_state as a list and inputs into the simulation.

By saving both the configuration and the PRNG_state, one can
start a simulation again on the same trajectory
(providing one sets the parameters such as temperature and pressure).
The snapshots module includes methods saving and loading the
configuration, PRNG_state, and parameters.
A single command to save all aspects of the simulation
and reload the simulation where it leftoff will later be added into the main code and added to the tutorials.

Running models in parallel

Due to the global clock in kMC there seems to be no
simple and efficient way to parallelize a kMC program.
kmcos certainly cannot parallelize a single system over
processors. However one can run several kmcos instances
in parallel which might accelerate sampling or efficiently
check for steady state conditions.

However in many applications it is still useful to
run several models seperately at once, for example to scan
some set of parameters one a multicore computer. This
kind of problem can be considered embarrasingly parallel
since it requires no communication between the runs.

This is made very simple through the multiprocessing module,
which is in the Python standard library since version 2.6.
For older versions this needs to be downloaded <http://pypi.python.org/pypi/multiprocessing/>
and installed manually. The latter is pretty straightforward.

Then besides kmcos we need to import multiprocessing

from multiprocessing import Process
from numpy import linspace
from kmcos.run import KMC_Model

and let’s say you wanted to scan a range of temperature,
while keeping all other parameteres constant. You first
define a function, that takes a set of temperatures
and runs the simulation for each

def run_temperatures(temperatures):
 for T in temperatures:
 model = KMC_Model()
 model.parameters.T = T
 model.do_steps(100000)

 # do some evaluation

 model.deallocate()

In order to split our full range of input parameters, we
can use a utility function

from kmcos.utils import split_sequence

All that is left to do, is to define the input parameters,
split the list and start subprocesses for each sublist

if __name__ == '__main__':
 temperatures = linspace(300, 600, 50)
 nproc = 8
 for temperatures in split_sequence(temperatures, nproc):
 p = Process(target=run_temperatures, args=(temperatures,))
 p.start()

Running the Model–the GUI way

After successfully exporting and compiling a model you get
two files: kmc_model.so and kmc_settings.py. These two files
are really all you need for simulations. So a simple
way to view the model is the

python3 kmcos view

command from the command line. For this two work you need to
be in the same directory as these two files (more precisely
these two files need to be in the python import path) and
you should see an instance of your model running.
This feature can be quite useful to quickly obtain an
intuitive understanding of the model at hand. A lot of settings
can be changed through the kmc_settings.py such as rate constant
or parameters.
To be even more interactive you can set a parameter
to be adjustable. This can happen either in the generating XML
file or directly in the kmc_settings.py. Also make sure to set
sensible minimum and maximum values.

How To Prepare a Model and Run It Interactively

If you want to prepare a model in a certain
way (parameters, size, configuration) and
then run it interactively from there, there
is in easy way, too. Just write a little python
script. The with-statement is nice because it takes
care of the correct allocation and deallocation

#!/usr/bin/env python

from kmcos.run import KMC_Model
from kmcos.view import main

with KMC_Model(print_rates=False, banner=False) as model:
 model.settings.simulation_size = 5

with KMC_Model(print_rates=False, banner=False) as model:
 model.do_steps(int(1e7))
 model.double()
 model.double()
 # one or more changes to the model
 # ...
 main(model)

Or you can use the hook in the kmc_settings.py called setup_model.
This function will be invoked at startup every time you call

kmcos view, run, or benchmark

Though it can easily get overwritten, when exporting or rebuilding.
To minimize this risk, you e.g. place the setup_model function
in a separate file called setup_model.py and insert into kmc_settings.py

from setup_model import setup_model

Next time you overwrite kmc_settings.py you just need to add this line
again.

The Runtime View

[image: ../_images/screenshot_view_ruo2.png]

The compiled module can be run and watched in realtime.
When parameters are changed this is immediately reflected
in the rate constants.

 _images/screenshot_editor_parameters.png
v Processes
CO_adsorption_bridge
CO_adsorption_cus.
CO_desorption_bridge
CO_desorption_cus.
COdiff_bridge_down
Codiff_bridge.left
COdiff_bridge._right
Codiff_bridge_up
COdiff_cus_down
COdiff_cus_left
COdiff_cus_right
codiff_cus_up

File Edit Insert Help
New Name v Info
"~ Addlattice | Name{f] < Lattice(s)
= ruo2 visible
Add Species value:‘,;m ‘ =
Add Parameter adjustable output
Add Process min{ 300.0 max| 1,500 ~ Parameters
open A 20.0616*angstrom*+2
E_CO_bridge -16
save E_CO_cus -13
Save As E_COdiff_bridge_bridge 0.6
Export Source E_COdiff_bridge_cus 16
T E_COdiff_cus_bridge 13
= E_COdiff_cus_cus 17
Qut E_0_bridge 23
E_O_cus -1.0
E_Odiff_bridge_bridge 0.7
E_Odiff_bridge_cus 23
E_Odiff_cus_bridge 10
E_Odiff_cus_cus 16
E_react,Obridge_CObridge 1.5
[t"Obridge_COcus 08
E_react_Ocus_CObridge 1.2
E_react_Ocus_COcus 0.9
T 450
p_COgas 1
p_0O2gas 1

p_COgas*bar*A/2/sqrt(2*pi*umass*m_CO/beta)
Pp_COgas*bar*A/2/sqrt(2*pi*umass*m_CO/beta)
p_COgas*bar+A/2/sqrt(2*pi*umass*m_CO/beta)*exp(beta*(E_CO_bridge-mu_COgas)*eV)
P_COgas*bar+A/2/sqrt(2*pi*umass*m_CO/beta)*exp(beta*(E_CO_cus-mu_COgas)*eV)
(betah)*+(-1)*exp(-beta* (E_COdiff_bridge_bridge)*eV)
(beta*h)++(-1)*exp(-beta*(E_COdiff_bridge_cus)+ev)
(beta*h)*+(-1)*exp(-beta*(E_COdiff_bridge_cus)*eV)
(beta*h)++(-1)*exp(-beta*(E_COdiff_bridge_bridge)*eV)
(betah)*+(-1)*exp(-beta*(E_COAiff_cus_cus)*ev)
(beta*h)++(-1)*exp(-beta*(E_COdiff_cus_bridge)+eV)
(betah)*+(-1)*exp(-beta*(E_COAiff_cus_bridge)*eV)
(beta*h)*+(-1)*exp(-beta*(E_COdiff_cus_cus)*eV)

02_adsorption_bridge_right p_O2gas*bar*A/sqrt(2*pi*umass*m_O2/beta)

02_adsorption_bridge_up
02_adsorption_cus_right

02_adsorption_cus_up

p_O2gas*bar*A/sqrt(2*pi*umass*m_O2/beta)
p_O2gas*bar*A/sqrt(2*pi*umass*m_O2/beta)
p_O2gas*bar*A/sqrt(2*pi*umass*m_O2/beta)

02_desorption_bridge_right p_02gas*bar+A/sqrt(2+pi*umass*m_02/beta)*exp(beta*((E_O_bridge+E_O_cus)-mu_02gas)*eV)

02_desorption_bridge_up
02_desorption_cus_right

02_desorption_cus_up
Oiff_bridge_down

diff_bridge_left

P_02gas*bar*A/sqrt{2+pi*umass*m_O2/beta)*exp(beta*(2+E_O_bridge-mu_02gas)*eV)
p_02gas*bar*A/sqrt(2+pi*umass*m_O2/beta)*exp(beta*((E_O_cus+E_O_bridge)-mu_02gas)*eV)
P_02gas*bar*A/sqrt{2+pi*umass*m_O2/beta)*exp(beta*(2+E_O_cus-mu_02gas)*eV)
(beta*h)+(-1)*exp(-beta*(E_Odif_bridge_bridge)*ev)
(beta*h)++(-1)*exp(-beta*(E_Odiff_bridge_cus)*eV)

_images/screenshot_editor_species.png
File Edit Insert Help

New Name v Info
Name: E_react_Obridge_CObridge 1.5
_ E_react_Obridge_COcus 0.8
| Add species] color: Atoms(€0" [0,0,010,0.1.21) € react Ocus Cobridge 12
Add Parameter . E_react_Ocus_COcus. 09
Representation:
Add Process T 450
- p_COgas 1
Open
p_O2gas. 1
save o P
Save As €O_adsorption_bridge p_COgas*bar+A/2/sqrt(2*pi*umass*m_CO/beta)
" Export Source | €O_adsorption_cus p_COgas*bar*A/2/sqrt(2*pi*umass*m_CO/beta)
—— CO_desorption_bridge p_COgas*bar*A/2/sqrt(2*pi*umass*m_CO/beta)*exp(beta*(E_CO_bridge-mu_COgas)*eV)
| tep) CO_desorption_cus. P_COgas*barA/2/sqrt{2+pi*umass*m_COjbeta)*exp(beta*(E_CO_cus-mu_COgas)*eV)
Quit Codiff_bridge_down (betah)*+(-1)*exp(-beta* (E_COdiff_bridge_bridge)*eV)
Codiff_bridge.left (beta*h)*+(-1)*exp(-beta*(E_COiff_bridge_cus)*eV)
COdiff_bridge._right (beta*h)*+(-1)*exp(-beta*(E_COdiff_bridge_cus)*eV)
Codiff_bridge_up (beta*h)*+(-1)*exp(-beta*(E_COiff_bridge_bridge}*eV)
COdiff_cus_down (betah)*+(-1)*exp(-beta*(E_COAiff_cus_cus)*ev)
COdiff_cus_left (beta*h)*+(-1)*exp(-beta*(E_COdiff_cus_bridge)*eV)
COdiff_cus_right (betah)*+(-1)*exp(-beta*(E_COAiff_cus_bridge)*eV)
codiff_cus_up (beta*h)*+(-1)*exp(-beta*(E_COdiff_cus_cus)*eV)

02_adsorption_bridge_right p_02gas*bar+A/sqrt(2*pi*umass*m_02/beta)

02_adsorption_bridge_up p_O2gas*bar+A/sqrt(2*pi*umass*m_02/beta)

02_adsorption_cus_right p_O2gas*barA/sqrt(2+pi*umass*m_O2/beta)

02_adsorption_cus_up p_O2gas*bar+A/sqrt(2*pi*umass*m_02/beta)

02_desorption_bridge_right p_02gas*bar+A/sqrt(2+pi*umass*m_02/beta)*exp(beta*((E_O_bridge+E_O_cus)-mu_02gas)*eV)
02_desorption_bridge up p_O2gas*bar*A/sqrt(2*pi*umass*m_O2/beta)*exp(beta*(2*E_O_bridge-mu_O2gas)*eV)
02_desorption_cus_right p_O2gas*bar+A/sqrt(2*pi*umass*m_02/beta)*exp(beta*((E_O_cus+E_O_bridge)-mu_02gas)*eV)
02_desorption_cus_up Pp_O2gas*bar*A/sqrt(2*pi*umass*m_O2/beta)*exp(beta*(2*E_O_cus-mu_O2gas)*eV)

Oiff_bridge_down (beta*h)*+(-1)*exp(-beta*(E_Odiff_bridge_bridge)*eV)
Odiff_bridge_left (beta*h)*+(-1)*exp(-beta*(E_Odiff_bridge_cus)*eV)
Odiff_bridge_right (beta*h)++(-1)*exp(-beta*(E_Odiff_bridge_cus)*eV)
Odiff_bridge_up (beta*h)*+(-1)*exp(-beta*(E_Odiff_bridge_bridge)*eV)
Odiff_cus_down (beta*h)*+(-1)*exp(-beta*(E_Odiff_cus_cus)*eV)
Odiff_cus_left (beta*h)*+(-1)*exp(-beta*(E_Odiff_cus_bridge)*eV)
Odiff_cus_right (beta*h)++(-1)*exp(-beta*(E_Odiff_cus_bridge)*eV)
Odiff_cus_up (beta*h)*+(-1)*exp(-beta*(E_Odiff_cus_cus)*eV)
React_bridge_down (beta*h)++(-1)*exp(-beta*E_react_Obridge_CObridge*eV)
React_bridge_left (beta*h)**(-1)*exp(-beta*E_react_Obridge_COcus*eV)
React_bridge_right (beta*h)++(-1)*exp(-beta*E_react_Obridge_COcus*eV)
React_bridge_up (beta*h)**(-1)*exp(-beta*E_react_Obridge_CObridge*eV)
React_cus_down (beta*h)**(-1)*exp(-beta*E_react_Ocus_COcus*eV)
React_cus_left (beta*h)**(-1)*exp(-beta*E_react_Ocus_CObridge*eV)
React_cus_right (beta*h)++(-1)*exp(-beta*E_react_Ocus_CObridge*eV)
Reaclic%up (beta*h)**(-1)*exp(-beta*E_react_Ocus_COcus*eV)

~ Species
o

empty

_images/screenshot_editor_diffusion.png
File Edit

Insert Help

v Processes
CO_adsorption_bridge
CO_adsorption_cus.
CO_desorption_bridge
CO_desorption_cus.
COdiff_bridge_down
COdiff_bridge.left
COdiff_bridge._right
Codiff_bridge_up
COdiff_cus_down
COdiff_cus_left

COdiff_cus_up
02_adsorption_bridge.right
02_adsorption_bridge_up
02_adsorption_cus_right
02_adsorption_cus_up
02_desorption_bridge.right
02_desorption_bridge_up
02_desorption_cus_right
02_desorption_cus_up
diff_bridge_down
diff_bridge_left
diff_bridge_right
diff_bridge_up
0diff_cus_down
iff_cus_left
Odiff_cus_right
0diff_cus_up
React_bridge_down
React_bridge_left
React_bridge_right
React_bridge_up
React_cus_down
React_cus_left
React_cus_right
React_cus_up

> Species

co

o

empty

New Name; COdiff_cus_right | [Name v Info
Add Lattice | Chemical expmion{ CO@cus + empty@bridge -> empty@cus + CO@bridge \ E_react_Obridge_CObridge 1.5
| Add Speces_Rate xpression: [£h)*(1)"expCbeta*(E_COATT_cus_bridge)ev) E:E:g::’ce;r‘: ‘1’:';
Add Parameter E_react_Ocus_COcus. 0.9
T 450

p_COgas 1

p_0O2gas 1

p_COgas*bar*A/2/sqrt(2*pi*umass*m_CO/beta)
p_COgas*bar*A/2/sqrt(2*pi*umass*m_CO/beta)
p,cogas*nar*;vz/sqn(z*pi*umass*m,co/bexa)*exp(bexa*(s,co,midgemu,cogasye\%
p_COgas*bar*A/2/sqrt(2*pi*umass*m_CO/beta)*exp(beta*(E_CO_cus-mu_COgas)*eV)
(beta*h)*+(-1)*exp(-beta*(E_COiff_bridge_bridge)*eV)
(beta*h)*+(-1)*exp(-beta*(E_COdiff_bridge_cus)*eV)
(beta*h)*+(-1)*exp(-beta*(E_COiff_bridge_cus)*eV)
(beta*h)*+(-1)*exp(-beta*(E_COiff_bridge_bridge)*eV)
(beta*h)++(-1)*exp(-beta*(E_COdiff_cus_cus)*eV)
(beta*h)*+(-1)*exp(-beta*(E_COdiff_cus_bridge)*eV)
(beta*h)* beta*(E_COdiff_cus_bridge)*eV)
(beta*h)++(-1)*exp(-beta*(E_COdiff_cus_cus)*eV)
p_02gas*bar*Alsqrt(2*pi*umass*m_O2/beta)
p_02gas*bar*Alsqrt(2*pi*umass*m_O2/beta)
p_02gas*bar*Alsqrt(2*pi*umass*m_O2/beta)
p_02gas*bar*Alsqrt(2*pi*umass*m_O2/beta)
p_02gas*bar*Ajsqrt(2+pi*umass*m_02/beta)*exp(beta*((E_O_bridge+E_O_cus)-mu_02gas)*eV)
Pp_O2gas*bar*A/sqrt(2*pi*umass*m_O2/beta)*exp(beta*(2*E_O_bridge-mu_O2gas)*eV)
p_02gas*bar*Ajsqrt(2+pi*umass*m_02/beta)*exp(beta*((E_O_cus+E_O_bridge)-mu_02gas)*eV)
Pp_O2gas*bar+A/sqrt(2*pi*umass*m_O2/beta)*exp(beta*(2*E_O_cus-mu_O2gas)*eV)
(beta*h)*+(-1)*exp(-beta*(E_Odiff_bridge_bridge)*eV)
(beta*h)*+(-1)*exp(-beta*(E_Odiff_bridge_cus)*eV)
(beta*h)*+(-1)*exp(-beta*(E_Odiff_bridge_cus)*eV)
(beta*h)*+(-1)*exp(-beta*(E_Odiff_bridge_bridge)*eV)
(beta*h)++(-1)*exp(-beta*(E_Odiff_cus_cus)+eV)
(beta*h)++(-1)*exp(-beta*(E_Odiff_cus_bridge)*eV)
(beta*h)*+(-1)*exp(-beta*(E_Odiff_cus_bridge)*eV)
(beta*h)+*(-1)*exp(-beta*(E_Odiff_cus_cus)+eV)
(beta*h)++(-1)*exp(-beta*E_react_Obridge_CObridge*eV)
(beta*h)**(-1)*exp(-beta*E_react_Obridge_COcus*eV)
(beta*h)*+(-1)*exp(-beta*E_react_Obridge_COcus*eV)
(beta*h)**(-1)*exp(-beta*E_react_Obridge_CObridge*eV)
(beta*h)++(-1)*exp(-beta*E_react_Ocus_COcus*eV)
(beta*h)**(-1)*exp(-beta*E_react_Ocus_CObridge*eV)
(beta*h)*+(-1)*exp(-beta*E_react_Ocus_CObridge*eV)
(beta*h)**(-1)*exp(-beta*E_react_Ocus_COcus*eV)

_images/screenshot_editor_lattice.png
File Edit Insert Help
New Name: T2 | Color Name ~ | Info
‘Add Lattice < Lattice(s)
—— ruo2 visible
| AddSpecies | Meta
Add Parameter output
Add Process |V Parameters
Open A hm.oﬁl&*arl;lrom“z
E_CO_bridge 16
save E_CO_cus -13
Save As E_COdiff_bridge_bridge 0.6
Export Source E_COdiff_bridge_cus 16
T E_COdiff_cus_bridge 13
= E_COdiff_cus_cus 17
Qut E_0_bridge 23
E_O_cus -1.0
E_Odiff_bridge_bridge 0.7
E_Odiff_bridge_cus 23
E_Odiff_cus_bridge 10
E_Odiff_cus_cus 16
E_react_Obridge_CObridge 1.5
E_react_Obridge_COcus 0.8
E_react_ Ocus_CObridge 1.2
E_react_Ocus_COcus 09
T 450
p_COgas 1
p_O2gas. 1

v Processes
CO_adsorption_bridge
CO_adsorption_cus.
CO_desorption_bridge
CO_desorption_cus.
COdiff_bridge_down
Codiff_bridge.left
COdiff_bridge._right
Codiff_bridge_up
COdiff_cus_down
COdiff_cus_left
COdiff_cus_right
codiff_cus_up

p_COgas*bar*A/2/sqrt(2*pi*umass*m_CO/beta)
Pp_COgas*bar*A/2/sqrt(2*pi*umass*m_CO/beta)
P_COgas*bar+A/2/sqrt{2+pi*umass*m_CO/beta)*exp(beta*(E_CO_bridge-mu_COgas)*eV)
P_COgas*bar*A/2/sqrt(2*pi*umass*m_CO/beta)*exp(beta*(E_CO_cus-mu_COgas)*eV)
(betah)*+(-1)*exp(-beta* (E_COdiff_bridge_bridge)*eV)
(beta*h)*+(-1)*exp(-beta*(E_COdiff_bridge_cus)*eV)
(beta*h)*+(-1)*exp(-beta*(E_COdiff_bridge_cus)*eV)
(beta*h)*+(-1)*exp(-beta*(E_COdiff_bridge_bridge)*eV)
(betah)*+(-1)*exp(-beta*(E_COAiff_cus_cus)*ev)
(beta*h)*+(-1)*exp(-beta*(E_COdiff_cus_bridge)*eV)
(betah)*+(-1)*exp(-beta*(E_COAiff_cus_bridge)*eV)
(beta*h)*+(-1)*exp(-beta*(E_COdiff_cus_cus)*eV)

02_adsorption_bridge_right p_02gas*bar+A/sqrt(2*pi*umass*m_02/beta)

02_adsorption_bridge_up p_O2gas*bar+A/sqrt(2*pi*umass*m_02/beta)

02_adsorption_cus_right p_O2gas*barA/sqrt(2+pi*umass*m_O2/beta)

02_adsorption_cus_up p_O2gas*barA/sqrt(2*pi*umass*m_02/beta)

02_desorption_bridge_right p_02gas*bar+A/sqrt(2+pi*umass*m_02/beta)*exp(beta*((E_O_bridge+E_O_cus)-mu_02gas)*eV)
02_desorption_bridge_up p_02gas*bar+A/sqrt(2+pi*umass*m_02/beta)*exp(beta*(2+E_O_bridge-mu_02gas)*eV)
02_desorption_cus_right p_O2gas*bar+A/sqrt(2*pi*umass*m_02/beta)*exp(beta*((E_O_cus+E_O_bridge)-mu_02gas)*eV)
02_desorption_cus_up p_O2gas*bar+A/sqrt(2+pi*umass*m_02/beta)*exp(beta*(2+E_O_cus-mu_02gas)*eV)
Oiff_bridge_down (beta*h)++(-1)*exp(-beta*(E_Odiff_bridge_bridge)+eV)

Odiff_bridge_left (beta*h)++(-1)*exp(-beta*(E_Odiff_bridge_cus)*eV)

(<]

_images/step_local_smart.png
proclist/do_kmc_steps
base/update_clocks

rates
Increment kmc_time by

base/update_accum_rate

accum.rates (1) =
3i_ rates(j) * nr.of sites(j)

_ rand time
Tog(accun rates (ar_of proc))

accum_rate
nr_of_sites:

rand_time

rand_proc rang site

avail_sites -\' \'
base/determine_procsite 3—

base/interval_search_real

proclist/run_proc_nr

proclist/<put/take>_x_*_x
Run the current status of lattice through the

hardcoded decision trees to decide which
processes must be turned on/off.

Find proc such that
accum_rate (proc - 1) <=
(rand_proc *
accum_rate (nr_of_proc))
<=accum_rate (proc)

lattice/<add/del>_proc
base/<add/del>_proc

pick a site from
avail_sites(proc, . , 1)
at random

7Y
i T e

site

lattice

_images/step_otf.png
proclist/do_kmc_steps

base/update_accum_rate

accun rates (1) =
Shor (S04 rates matrixte,)

1<i<nrofproc

+(p) = nr_of sites(p)

rates_matrix

nr_of_sites

|~ proclist/run_proc_nr

Tun_proc_*/run_proc_+
Run the current status of lattice through the

hardcoded decision trees to decide which
processes must be turned on, which nedd to be
turned and which need an update in the ir
rate_constant.

lattice/<add/del>_proc
(base/<add/del>_proc—

proclist_pars/gr_x
Get the current rate const. of a process.

lattice/update_rates_matrix
N base/' npdace,rates,macrix)

\ accum_rate

base/update_clocks
Increment kmc_time by

_ rand tine
Tog(accun rates (nr_of proc))

rand_time

Tand_proc rang site

base/determine_procsite L—

base/interval_search_real —

Find proc such that
accum_rates (proc - 1) <=
(rand_proc *
accun_rates (nr_of_proc))
<= accum_rate (proc)

accum rates_proc(i) =
ZJ:; rates matrix(proc, j)

base/interval_search_real —

Find s such that
accum_rates_proc(s - 1) <=
(rand_site *
accum_rates_proc(ts))
<= accum_rate_proc(s)
with
ts =nr_of_sites(proc)

Y
L) i @

lattice site PTeC.

site =avail_sites(proc, s, 1)

e N —

_images/screenshot_view_ruo2.png
- CO_oxidation_Ruo2

kmos GUI

9

CO_oxidation

382

381

co

empty

@~ o n T MmN

_oWs, S Ul 40L

©
5
Eil

10

08

° =
s o

sbesanod

02: 1.00e+00 bar (log)

3.881e+01 s (1.825e+07 steps)

T: 600.0K

CO: 8.08e-01 bar (log)

ige: -2.3

E_O_bridk

_images/step_lat_int.png
proclist/do_kmc_steps

base/update_clocks
Increment kmc_time by

_ rand time
Tog(accun rates (nr_of proc))

rates

base/update_accum_rate

accum.rates (1) =
S, rates(j) * nrof sites(j)

accum_rate

nr_of_sites: rand_time

rand_proc rang site

avail_sites -\' \'
base/determine_procsite E—

base/interval_search_real

proclist/run_proc_nr

Tun_proc_/run_proc_*
nli_*/nli_*
Determine which process in the LI
group is possible, if any.

Find proc such that
accum_rate (proc - 1) <=
(rand_proc *
accum_rate (nr_of_proc))
<=accum_rate (proc)

lattice/<add/del>_proc
base/<add/del>_proc

pick a site from
avail_sites(proc, . , 1)
at random

L) 1 prec

site

_images/write_proclist.png
ProcListWriter.write_proclist

| _if code_generator =

ProcListWriter
ProcListWriter

| _if code_generator =

ProcListWriter

| _if code_generator =

ProcListWriter
ProcListWriter
ProcListWriter
ProcListWriter

ProcListWriter.
ProcListWriter.
ProcListWriter.
ProcListWriter.
ProcListWriter.

’local_smart’

|_ProclListWriter.write_proclist_generic_part

.write_proclist_constants
.write_proclist_generic_subroutines

| _ProcListWriter.write_proclist_run_proc_nr_smart
|_ProcListWriter.write_proclist_put_take

| ProcListWriter.write_proclist_touchup
|_ProcListWriter.write_proclist_multilattice

| _ProcListWriter.write_proclist_end

’lat_int’

| _ProclListWriter.write_proclist_constants
| _ProclListWriter.write_proclist_lat_int

._get_lat_int_groups
write_proclist_lat_int_run_proc_nr
write_proclist_lat_int_touchup
write_proclist_generic_subroutines
write_proclist_lat_int_run_proc
write_proclist_lat_int_nli_casetree

|_ProcListWriter.write_proclist_end

Jotf’

|_ProcListWriter.write_proclist_pars_otf
| _ProcListWriter.write_proclist_otf

.write_proclist_generic_subroutines
.write_proclist_touchup_otf
.write_proclist_run_proc_nr_otf
.write_proclist_run_proc_name_otf

| _ProcListWriter.write_proclist_end

_images/math/00638f1bbecfde0bad7baf8d6c7d34b90552af8f.png

_static/up.png

_images/math/0268e0a93e47bc316c3d24060f782557873cd7bd.png
e (0, 1]

nav.xhtml

 Table of Contents

 		
 Welcome to kmcos’s documentation!

 		
 Installation

 		
 Making a Python Virtual Environment for kmcos within Ubuntu

 		
 Installing kmcos on Ubuntu Linux

 		
 Installing kmcos on Fedora Linux (typically inside a virtual environment)

 		
 Installation on openSUSE 12.1 Linux (Deprecated Instructions)

 		
 Installation on openSUSE 13.1 Linux (Deprecated Instructions)

 		
 Installation on Mac OS X 10.10 or above (Deprecated Instructions)

 		
 Installation on windows

 		
 Installing JANAF Thermochemical Tables

 		
 Tutorials

 		
 Introduction

 		
 Feature overview

 		
 The Runtime View

 		
 A first kMC Model–the API way

 		
 Build the model

 		
 Populate process list and parameter list

 		
 Export, save, compile

 		
 Taking it home

 		
 An alternative way using .ini files

 		
 Running the Model From Runfiles

 		
 Running the Model–the API way

 		
 Generate Grids of Sampled Data

 		
 Manipulating the Model Species at Runtime

 		
 Saving and Reloading the State of the Simulation

 		
 Running models in parallel

 		
 Development

 		
 Running the Model–the GUI way

 		
 How To Prepare a Model and Run It Interactively

 		
 The Model Editor (Deprecated – glade migration is required to revive this feature)

 		
 Topic Guides

 		
 The Concept of Kinetic Monte Carlo

 		
 Why use Kinetic Monte Carlo?

 		
 Basic Kinetic Carlo Algorithm

 		
 Justification of the Algorithm

 		
 Further Reading

 		
 Modelling Workflows

 		
 kMC Modeling

 		
 kmcos workflows

 		
 The kmcos data model

 		
 How the kmcos kMC algorithm works

 		
 The kmcos O(1) solver

 		
 Temporal acceleration

 		
 The otf Backend

 		
 Reference

 		
 Example

 		
 Advanced OTF rate expressions

 		
 Running otf-kmcos models

 		
 Known Issues

 		
 The Process Syntax

 		
 Adsorption

 		
 Diffusion

 		
 Avoid Double Counting

 		
 Taking It Home

 		
 The Site/Coordinate Syntax

 		
 Manual generation

 		
 Advanced Coordinate Techniques

 		
 Taking it home

 		
 Developer’s guide

 		
 Introduction and disclaimer

 		
 How to edit, install, and test your changes locally

 		
 Some nomenclature

 		
 The three backends

 		
 The structure of the FORTRAN code.

 		
 Key data-structures

 		
 One kmc step in kmcos

 		
 The code generation routines

 		
 Reference

 		
 Model running commands

 		
 Typical usage: model.[command]

 		
 Connected Variables

 		
 Data Types

 		
 kmcos.types

 		
 kmcos.io

 		
 Editor frontend

 		
 kmcos.gui

 		
 kmcos.forms

 		
 Runtime frontend

 		
 kmcos.run

 		
 kmcos.view

 		
 kmcos.cli

 		
 kmcos.utils

 		
 kmcos kMC project DTD

 		
 Backends

 		
 local_smart

 		
 lat_int

 		
 otf

 		
 Command Line Interface (CLI)

 		
 List of commands

 		
 Trouble Shooting

 		
 Frequently Asked Questions

_images/math/0e32ef13d99142908917b29ba5476c07bfbd4372.png
t—t—

_images/math/13b640dc6849349c177aaee691086da776dc3f72.png
t < tnax

_images/math/07692b3961e9e33d49f02df00d4edf152bbd0e6d.png

_images/math/094f153f2ab47839c60c629ccc718b26dae0da22.png

_images/math/1e3302101d8f94c1c18827fc25a664a703479744.png

_images/math/1e9cb9ed58634f44ad57ff5cc730a504b9b02a27.png

_images/math/180e20a8736eb91bb6efca7ea980f08d3238f8fb.png
O (nproc)

_images/math/1d5a878820deb0c9ea210ea91b548d772cc57aa8.png
Ry, Ry €0, 1]

_images/math/23400518e1d6724609cabadee79bedcbf351ac2e.png

_images/math/27fd1f274eba4c39362118766392595e7fd85a7c.png
Ry €]0, 1]

_images/math/2bdb957fd7c8b9c31c19ddccd906095a24aeae21.png
U < ran proc.ran_site < |

_images/math/3fa4f377e8fd567a67befa90cd588529c22bf572.png

_images/math/488ac7b6826ab9f4b645a25f0a3c46bea4d53d57.png
(312 = 2.66 10

_images/math/2eae8b9bb1383defaa1cd891c771b432b7265022.png

_images/math/308441e09dbf7e951139f62cd5f97e131c48c465.png
Ry € |0, 1]

_images/math/5e36f5df1f46f7a2a32df73aaf14ed4f70db4bd9.png

_images/math/5ec053cf70dc1c98cc297322250569eda193e7a4.png

_images/math/4f8245e0d1d2e029f7cb1658022cb3777da67fe5.png
At

_ —log(Rt3)
kiot

_images/math/58236c95e137df53ce41debb7f6f5ebd235d1210.png
pilt + At) = pilt) +) —kjipi(t)dt + ki (£)dt

_images/math/6b21e0b0899a0d2879d3b8019087fa630bab4ea2.png

_images/math/72fe6bd26ccbb1a15919ef360c60719e0c7601d8.png
O (nr_of _procs)

_images/math/6612c00e169d87ba4436998bd738dc6d79faab80.png

_images/math/79f5e55b04cf2368273def4ebcd378b3f39aed62.png

_images/math/7fa363347e0e5ed1894c512e82836555e37a2d50.png

_images/math/73d68d65aa7f7aeae9a9a8e7074a47186535ec2f.png
{At; }

_images/math/76847ff1ce0c3ac64d2a5a75690c01b048486481.png
—In(Ra) / kot

_images/math/86c5269f5d1ecdd2c651815e55e2d19febcb5ad4.png

_images/math/8043644897a07f82a9084aa372ab64731fc78b24.png
i nr-of-sites())

accun rates(i) =)) ratesmatrix(j, k)
=

_images/math/85131c0a0b020c5e6564adca3f5b4a9ebca9cc71.png

_images/math/936d8aae631c73dc975886e9a90e6f29587b0e81.png

_images/math/9740527091af8da3bdb79229c5be9abb6026a866.png
€ (1, nr_of_proc

_images/math/8aabbcc6dbed7661ff37c5611c70dca8a10bed2f.png

_images/math/907c7a03abc053383b22e243c6f702e7c9b9962a.png

_images/math/a4252129646a4cf23988324c0c713ccad3ef31e2.png
kij < Kigot Ry < z‘ ki

_images/math/a52d0573c9424edc257a3833a79c1d1d499c7fff.png

_images/math/9dad42930456f1454a45f39100319ce336f7c378.png

_images/math/a199f54b3c84ea0cdf6ea07b19e615d462a5fc68.png
accun_rates _proc(i) =) rates matrix(proc, k).
=

_images/math/b359488b993294ebbc2c7b30ab8f749dcbc6826d.png

_images/math/c07b44a6107ab77986a20cc043ba5f414a588e5e.png
At

_images/del_proc.png
Deleting proc =3, site=5

avail_sites(., ., 1) avail_sites(., ., 2)

3/7/2 9|0/0|/0 0 0|0 0/ 3/1/0/0|0 2 0|40
54 1)/}6’*2\ 7/9 8|00 3/5/0/2 |1 /O"E\B 714
6 /3|5 2/4/8(0 0/ 0|0 0/4/2/5 3/1/0 6 00
2/1/8|0/0/0|0 O/ 0|0 2/1/0/0/0|0O 0 3|00

del_index = avail_sites(proc, site, 2)

move_site = avail_sites(proc, nr_of_sites(proc), 1)

avail_sites(proc, del_index, 1) « move_site

avail_sites(proc, nr_of_sites(proc), 1) « 0

avail_sites(proc, move_site , 2) « del_index

avail_sites(proc, site, 2) « 0

nr_of_sites(proc) ¢« nr_of_sites(proc) -1

_images/export_procedure.png
kmos export model.xml

— kmos.cli.main
—kmos.types.Project.import_file
'—kmos.io.export_source

— kmos.io.ProcListWriter.write_template
— kmos.io.ProcListWriter.write_proclist

'—kmos.io.ProcListWriter.write_settings

— kmos.utils.build
(I numpy . £2py .main

_images/benchmark.png
CPU time for 1 mio. steps [s]

Si

mple AB model

16

=
IS

=
N

=
)

o
®

o
o

o
IS

0.2

0.0
10

10

10°

10

? 10* 10

number of sites

s

10

10

10

_images/data_structures.png
Sa8Ssaoo0.ud

sites

kl n, iy king
k2 n, >y king
k3 n; >y king
k, ny > iy kin
k5 n5 Z?:l kin;
rate acumm.
| constants - nr of sites | |rates

sites

addresses

sites

addresses

sites

addresses

sites

addresses

sites

addresses

avail sites

_images/kmcos_structure.png
(C)Juan Manuel Lorenzi

Model building

Model running

Python interface
Abstract model }/‘(Source code

procist 90,

Binary modules
e e za

representation generator

laice, specie, parameters,
processe, rote consants, focalsmar la . ot

e (Y
A

Model file Inspect / edit

—
Viewer GUI I

kmcosview

Runner API

_images/math/da982f97f2130c0536779a8e122387644b6272b8.png
a; =Yy ¢n;

_images/math/de44f4639df6db42146e1df2f083ca6997a0bda0.png
e (0, 1]

_images/math/c50813496b42bb78d760946ca27ce28c962896ed.png
>~ rates(j) * nr.of sites(j)

accum rates (i)

_images/math/cbbcd3b143286162aaf4d862782b6eefdcb23a3c.png

_images/add_proc.png
Adding proc =1, site=6

avail_sites(., ., 1) avail_sites(., ., 2)

3/7/2/9|ojojo/o/o o] (o3 1/0]/0/0/2/0 40

541 10 7/9 8|00 3/5/0/2 1 68 7 4

6 /3|5 2 48(0 0/ 0|0 04253 /l 0 6 0|0

21/ 8(0/0N|O | 0/0|0 2/1/0/0/0/0 0 3|00
6

nr_of_sites(proc) « nr_of_sites(proc)

avail_sites(proc, nr_of_sites(proc), 1) « site

avail_sites(proc, site, 2) « nr_of_sites(proc)

_images/math/e11f2701c4a39c7fe543a6c4150b421d50f1c159.png

_images/avail_sites_example.png
., 1)

B

avail_sites(.

4

0

9

7

., 2)

2

0/6 00

1

3

1 10| 2

C.

0/0/0

1

4

3

5

avail_sites

0

_images/math/e21ca12f315142be0c68326953c19f9e29a31c21.png

_images/math/de76fa33f831e445712a8146064bcaba574b939a.png

_images/math/df0deb143e5ac127f00bd248ee8001ecae572adc.png

_images/math/ea7b78ca3fd084d7c3ad123e8f96329c4706f363.png
e |1, volume]

_images/math/c16d7aa2019007ebe1048708c468de6813e1bac0.png

_images/math/fb7963ccd863ad3ab74fe100c59d979556710ee2.png
3100

_images/math/fc92eba59c4ad38d8cb2423a94313356d5aa45ef.png
accum._rates (proc -1) =
ran_proc accum_rates (ar_of proc) <
accun_rates (proc)

_images/math/f3f4e8cf0cd9b49df35fb35860c712b30fc3a6f6.png
accum-rates proc(s -1) =
ran_site accum_rates_proc(nr_of_sites(proc)) <
accum_rates_proc (s)

_images/math/f64c037e75dbf2096b4a109dae88964ac598a034.png
O (nr_of procs x volume)

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_images/math/ebb6577711c71f5b136cff2908eedf598ae00d74.png
e |1, volume

_images/math/ec002955bdf95ee9869878fbad4f80fc98539359.png

_static/kmcos_logo.png
kmcos

_static/minus.png

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/down-pressed.png

_static/down.png

_static/comment.png

